УДК 551.577.46:551.501.777(470+571)

МОНИТОРИНГ СНЕЖНОГО ПОКРОВА НА ТЕРРИТОРИИ РОССИЙСКОЙ ФЕДЕРАЦИИ

О.Н. Булыгина, Н.Н. Коршунова, В.Н. Разуваев

Всероссийский научно-исследовательский институт гидрометеорологической информации — Мировой центр данных, г. Обнинск bulygina@meteo.ru, nnk@meteo.ru, razuvaev@meteo.ru

Описана технология мониторинга состояния снежного покрова России, разработанная и действующая в ФГБУ «ВНИИГМИ-МЦД». Приведены оценки региональных изменений основных характеристик снежного покрова с учетом информации за 2016 год.

Ключевые слова: мониторинг, снежный покров, квазиоднородные климатические районы, региональные особенности, маршрутные снегосъемки, высота снежного покрова, запас воды в снеге.

Введение

Значительные изменения климата, произошедшие в последние десятилетия, и возросшая зависимость различных отраслей экономики от этих изменений вызвали необходимость более тщательного слежения (мониторинга) за различными составляющими климатической системы. Основные задачи мониторинга сформулированы во Всемирной климатической программе [3], а основные требования к системе мониторинга определены в [4].

Снежный покров является важнейшим параметром климатической системы: благодаря высокой отражательной способности и низкой теплопроводности он играет важную роль в энергетическом балансе Земли, а накапливаемый в снежном покрове запас воды — в водном балансе.

Мониторинг характеристик снежного покрова проводится во многих странах. А для территории России, большая часть которой продолжительное время покрыта снегом, снежный покров играет одну из главных ролей в формировании климата. В [8] ежегодно помещаются результаты глобального анализа изменений характеристик снежного покрова. Созданная в России подсистема мониторинга снежного покрова выявляет и изучает региональные особенности в изменении характеристик снежного покрова. Методика официально утверждена решением Центральной методической комиссии по гидрометеорологическим и гелиогеофизическим прогнозам от 5 ноября 2013 года: (method.meteorf.ru/cmkp/nov13.html). Результатам анализа состояния снежного покрова на территории России посвящен третий раздел ежегодного «Доклада об особенностях климата на территории

Российской Федерации» [2], который является официальным изданием Федеральной службы по гидрометеорологии и мониторингу окружающей среды.

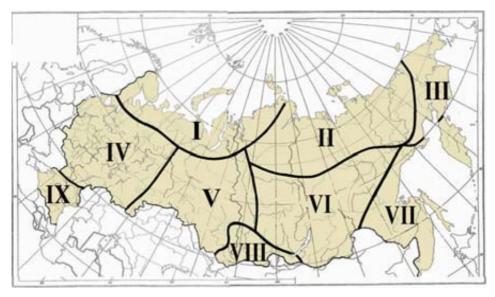
Информационная база

База данных мониторинга состояния снежного покрова (БД «СНЕГ») подразделяется на исторические ряды, оперативные данные и нормативные характеристики. Исторические ряды характеристик снежного покрова сформированы в ФГБУ «ВНИИГМИ-МЦД» Росгидромета на основе данных Госфонда гидрометеорологической информации. Оперативные данные поступают по каналам связи в виде телеграмм «СИНОП».

Основные требования к базовым сетям для мониторинга климата сформулированы в рамках Глобальной системы наблюдений за климатом [6, 7]. Мониторинг снежного покрова на территории России проводится по данным 958 метеорологических станций. Все эти метеорологические станции отнесены к типу незащищенных. По данным ежедневных наблюдений сформированы ряды данных о высоте снежного покрова и степени покрытия снегом окрестностей станции. По данным маршрутных снегомерных съемок сформированы ряды данных о влагозапасе и плотности снежного покрова. Из 958 станций на 665 проводятся наблюдения в поле, на 425 – в лесу (на 122 станциях осуществляются наблюдения и в поле, и в лесу). Поскольку методика наблюдений за характеристиками снежного покрова неоднократно изменялась [5], в информационную базу данных для мониторинга состояния снежного покрова включены данные за период с 1966 года. Состояние снежного покрова описывается за период с июля прошедшего года по июнь текущего.

В состав информационной базы входят следующие нормативные характеристики по метеостанциям:

- среднемноголетнее значение (за период 1961–1990 гг.) числа дней с покрытием снегом более 50 % территории вокруг метеостанции (по месяцам и за год);
- среднемноголетние даты появления первого снега (за период1961–1990 гг.);
- среднемноголетние даты образования устойчивого снежного покрова (за период 1961–1990 гг.);
- среднемноголетние значения (за период 1961–1990 гг.) максимальной высоты снежного покрова (по месяцам и за год);
- среднемноголетние значения (за период 1971–2000 гг.) максимального запаса воды в снеге (за год).


Согласно действующим рекомендациям ВМО, норма климатического параметра рассчитывается как среднее значение за 30-летний период. В настоящее время базовым считается период 1961–1990 гг.

В состав информационной базы также включены массивы временных рядов осредненных по всей территории России и по территории квазиоднородных климатических регионов характеристик:

- аномалии максимальной за зимний период высоты снежного покрова;
 - аномалий числа дней со снегом;
 - аномалий максимального за зимний период запаса воды в снеге.

Осреднение по площади выполнено как взвешенное осреднение станционных аномалий климатических переменных с весами, учитывающими плотность сети в окрестности станции. Аномалии на метеостанциях арифметически осреднялись по квадратам сетки $(1^{\circ} \text{ N} \times 2^{\circ} \text{ E})$, а затем с весовыми коэффициентами в зависимости от широты квадрата проводилось осреднение по регионам, показанным на рисунке, и территории России. Выбор девяти квазиоднородых климатических регионов осуществлен на основании классификации Алисова [1].

Все массивы базы данных мониторинга состояния снежного покрова хранятся в форматах ASCII

Рис. Квазиоднородные климатические регионы: I — Север ЕЧР и Западной Сибири; II — Северная часть Восточной Сибири и Якутии; III — Чукотка и север Камчатки; IV — Центр ЕЧР; V — Центр и юг Западной Сибири; VI — Центр и юг Восточной Сибири; VII — Дальний Восток, VIII — Алтай и Саяны, IX — Юг ЕЧР.

Технология мониторинга снежного покрова

Для описания состояния снежного покрова используются следующие характеристики:

– число дней с покрытием снегом более 50 % территории вокруг метеостанции по данным ежедневных наблюдений (для оценки продолжительности залегания снежного покрова);

- дата появления первого снега;
- дата образования устойчивого снежного покрова;
- максимальная за зимний сезон высота снежного покрова;
- запас воды в снеге по данным маршрутных снегосъемок.

Технология мониторинга климата включает следующие основные этапы:

Figure 1
□ Усвоение станционных данных суточного разрешения и данных
маршрутных снегосъемок.
□ Пополнение БД «СНЕГ» данными текущего года:
- пополнение базовых массивов (ряды ежедневных данных о высоте
снежного покрова и степени покрытия снегом окрестностей станции; ряды
данных о влагозапасе и плотности снежного покрова по маршрутным сне-
госъемкам);
- расчет производных характеристик (максимальной за зимний пери-
од высоты снежного покрова; числа дней со снегом, максимального за
зимний период запаса воды в снеге);
– расчет аномалий (максимальной за зимний период высоты снежного
покрова; числа дней со снегом, максимального за зимний период запаса
воды в снеге, даты появления первого снега и даты образования устойчи-
вого снежного покрова).
□ Расчет регионально осредненных временных рядов (аномалии и
ранги).
□ Расчет обновленных статистик (на станциях и по регионам), вклю-
чая оценки трендов.
□ Расчет характеристик влагозапаса по бассейнам крупных рек и во-
дохранилищ Российской Федерации по состоянию на 20 марта текущего
года (в сравнении с нормой и с влагозапасами предыдущего года).
□ Подготовка иллюстративных материалов годового бюллетеня (в
соответствии с принятым регламентом выходной продукции).
□ Анализ материалов и подготовка раздела «Состояние снежного
покрова РФ».
Программные средства, разработанные во ВНИИГМИ-МЦД в среде
SAS, обеспечивают пополнение базовых массивов данными текущего года
и расчет всех производных массивов станционных значений – месячной и
годовой максимальной высоты снежного покрова; числа дней со снегом,
максимального за зимний период запаса воды в снеге, аномалий (на стан-
циях), даты появления первого снега и даты образования устойчивого
снежного покрова. Устойчивым снежный покров считается в тех случаях,
когда он лежит непрерывно в течение всей зимы или с перерывами не бо-

Аномалия климатической переменной (максимальной за зимний период высоты снежного покрова; числа дней со снегом, максимального за

рерывов было 2 или 3, то все они включаются в устойчивый покров.

лее 3 дней в течение каждых 30 дней залегания снега. Если весной, не более чем через 3 дня после схода покрова, вновь образуется покров и лежит не менее 10 дней, то считается, что залегание непрерывно. Если таких пе-

зимний период запаса воды в снеге, даты появления первого снега и даты образования устойчивого снежного покрова) определяется как отклонение от климатической нормы и рассчитывается по формуле:

$$\Delta X_y = X_y - X_{norm} .$$

Здесь ΔX_y – значение искомой аномалии в году y; X_y – значение климатической переменной X в году y; X_{norm} – норма климатической переменной (среднемноголетнее значение за тридцатилетний период).

Для получения осредненных по площади значений климатических переменных рассматриваются следующие масштабы горизонтального обобщения:

- территория Российской Федерации;
- квазиоднородные климатические регионы России.

Ввиду географической неоднородности средних величин климатических переменных и при наличии пропусков во временных рядах наблюдений пространственное осреднение проводится по данным об аномалиях соответствующей переменной. При необходимости региональные средние самой климатической переменной получают восстановлением из регионально осредненных аномалий и регионально осредненных норм. Область анализа (территория России, регион) покрывается сетью широтнодолготных квадрантов — «боксов» (ячеек сетки), и осреднение производится в два этапа: сначала усредняются станционные значения внутри каждого бокса, после чего полученные ячеечные средние усредняются между боксами с учетом весовых коэффициентов.

Для всех климатических переменных (станционных и пространственно осредненных) рассчитываются обновленные статистики, включая оценки трендов. Комплект статистических характеристик включает число случаев (лет), среднее, стандартное отклонение, минимум, максимум и оценки линейной аппроксимации, полученные методом наименьших квадратов, включая коэффициенты уравнения (свободный член и коэффициент линейного тренда).

В состав материалов мониторинга состояния снежного покрова входит иллюстративный материал (карты, графики, таблицы) и подготовленный на его основе текст, содержащий анализ текущих климатических аномалий и наблюдаемых изменений в режиме снежного покрова. Карты в действующей технологии готовятся с использованием пакета программ *MAPINFO* в регулярной азимутальной стереографической проекции. Используется стандартный IDW-метод пространственной интерполяции с коэффициентами обратно пропорциональными квадрату расстояния. При подготовке сложных рисунков используются готовые шаблоны, подготовленные в *Adobe Photoshop*, обеспечивающие достаточный уровень автоматизации.

Результаты

В качестве результатов работы технологии мониторинга снежного покрова рассмотрим анализ состояния снежного покрова на территории Российской Федерации зимой 2015–2016 гг.

Первый снег зимой 2015/2016 гг. на Европейской территории выпал позже среднеклиматических сроков на 10–20 дней в западных и южных областях, в восточных областях и на Урале – на 2–10 дней раньше. На Азиатской территории России раньше обычных сроков снег появился на большей части Западной Сибири, за исключением крайних северных районов, Новосибирской области и Алтайского края. В Тыве временное установление снежного покрова наблюдалось уже в первых числах октября. В северных и северо-восточных районах АТР из-за теплого октября первый снег выпал позже климатических сроков. Более позднее появление первого снега отмечалось также на большей части Забайкалья, южных районов Красноярского края, в Амурской области. Сошел снег на большей части страны раньше средних многолетних сроков из-за аномально теплых марта и апреля.

Продолжительность залегания снежного покрова в среднем по России была на 2,68 дня меньше, чем климатическая норма (табл. 1). Максимальные положительные аномалии отмечены на Алтае и в Саянах (VIII регион).

Таблица 1. Средние за зимний период (2015/2016 гг.) аномалии характе-
ристик снежного покрова, осредненные по территории квазиоднородных
климатических регионов России

Регион		Максимальная высота			Число дней со снегом		
		R	σ	Δ	R	σ	
Россия	1,98	22	3,08	-2,68	35	4,99	
Север ЕТР и Западной Сибири	1,27	21	7,88	-14,93	42	9,65	
Северная часть Восточной Сибири и Якутии	5,01	6	4,77	0,09	20	7,79	
Чукотка и север Камчатки	-5,74	38	9,91	-17,85	45	10,84	
Центр ETP	0,41	27	6,75	-5,72	31	10,22	
Центр и юг Западной Сибири	6,41	8	6,85	-0,28	24	8,29	
Центр и юг Восточной Сибири	4,08	11	6,20	0,85	27	6,06	
Дальний Восток	-3,11	42	7,91	-3,29	36	6,99	
Алтай и Саяны	8,98	8	6,91	6,69	15	9,55	
Юг ЕТР	1,09	20	4,51	-12,48	40	22,13	

Примечание: Δ – отклонения от средних за 1971–2000 гг.; R – ранг текущих значений в ряду убывающих характеристик зимнего периода за 1967-2016 гг.;

о – среднеквадратическое отклонение. Жирным шрифтом выделены аномалии, попавшие в 10 самых больших положительных или отрицательных значений за зимы 1967–2016 гг.

Максимальные отрицательные аномалии продолжительности залегания снежного покрова отмечены на севере Западной Сибири, в северовосточных районах Якутии и на Чукотке, и обусловлены они именно поздним установлением снежного покрова в этих районах. А отрицательные аномалии продолжительности залегания снежного покрова в северных и северо-западных областях ЕТР обусловлены более ранним сходом снежного покрова. При региональном осреднении максимальные отрицательные аномалии получены в I и III регионах, они вошли в 10 самых больших отрицательных аномалий за период с 1967 по 2016 год.

В зимний период 2015/2016 гг. максимальная высота снежного покрова в среднем по России близка к климатической норме, аномалия составила 1,98 см при величине стандартного отклонения 3,08 см (табл. 1). Однако в отдельных регионах наблюдались значительные аномалии максимальной за зиму высоты снежного покрова обоих знаков. На Европейской территории максимальная высота снежного покрова значительно превысила норму в центральных и восточных областях. На ряде станций Свердловской и Челябинской областей, Ханты-Мансийского АО (Златоуст, Ивдель, Березово, Саранпауль) были превышены абсолютные максимумы высоты снежного покрова.

На АТР значительные положительные аномалии максимальной высоты снежного покрова отмечены на большей части Западной Сибири, в южных районах Красноярского края, в Тыве, в отдельных областях Якутии и Чукотского АО. На отдельных станциях в этих регионах (Килеер, Ишим, Неожиданный, Киренск, Алдан) зафиксирована максимальная за период наблюдений высота снега. Отрицательные аномалии максимальной высоты снежного покрова получены только для двух регионов – ІІІ и VІІ. Очень снежным в Западной Сибири выдался декабрь 2015 года. Особенно сильные снегопады наблюдались в Тюменской области и Алтайском крае, где выпало более 2,5–3-месячных норм осадков.

Максимальный за прошедшую зиму запас воды в снеге по данным маршрутных снегосъемок в среднем по России оказался значительно ниже нормы в лесу и близким к норме в поле (табл. 2). Максимальные положительные аномалии запаса воды в снеге в поле отмечены в тех же районах, где наблюдались наибольшие аномалии максимальной высоты снежного покрова (районы V, VI и VIII). В V и VIII районах значения максимального запаса воды в снеге на полевом маршруте попали в первую десятку наибольших значений. В лесу максимальный запас в снеге оказался гораздо ниже нормы во всех квазиоднородных районах, кроме центра и юга Восточной Сибири (район VI), Алтая и Саян (район VIII). Отрицательные аномалии запаса воды в снеге на обоих маршрутах отмечены на северозападе ЕТР и Камчатке.

Многолетние изменения характеристик снежного покрова оценивались коэффициентами линейного тренда, характеризующими знак и среднюю скорость изменений максимальных за зимний период значений

высоты снежного покрова и числа дней со степенью покрытия окрестностей станции снегом более 50 % на интервале 1976-2016 гг., тренд выражен в см/10 лет и днях/10 лет соответственно.

Таблица 2. Аномалии максимального за зимний период (2015–2016 гг.)
запаса воды в снеге, осредненные по территории квазиоднородных клима-
тических регионов России

Регион	Запас воды в снеге (поле)			Запас воды в снеге (лес)		
	Δ	R	σ	Δ	R	σ
Россия	0,33	23	8,49	-22,22	37	14,86
Север ЕТР и Западной Сибири	-19,14	40	16,72	-31,82	38	25,4
Северная часть Восточной Сибири и Якутии	ı	1	-			
Чукотка и север Камчатки	-	ı	-	-36,98	47	26,69
Центр ETP	-5,65	34	17,9	-17,52	41	19,12
Центр и юг Западной Сибири	18,59	7	16,94	-10,71	26	23,06
Центр и юг Восточной Сибири	0,81	24	6,61	1,63	20	8,15
Дальний Восток	-4,38	35	20,45	-20,63	43	24,99
Алтай и Саяны	20,72	7	13,56	16,72	13	29,91
Юг ЕТР	-3,23	31	10,57	-	-	-

Примечание: Δ — отклонения от средних за 1971—2000 гг.; R — ранг текущих значений в ряду убывающих характеристик зимнего периода за 1967-2016 гг.;

 о – среднеквадратическое отклонение. Жирным шрифтом выделены аномалии, попавшие в 10 самых больших положительных или отрицательных значений за зимы 1967–2016 гг.

Как и в период 1976—2015 гг., наблюдается увеличение максимальной за зиму высоты снежного покрова на севере Западной Сибири, на побережье Охотского моря и дальневосточном юге, в центре ЕЧР, в Чукотском АО и на юге Камчатки. Уменьшение максимальной за зиму высоты снежного покрова наблюдается на отдельных станциях на севере ЕЧР, севере Камчатского края, северо-западе Республики Саха- Якутия. При осреднении по регионам, статистически значимые на 5%-ном уровне положительные коэффициенты линейного тренда получены как для России в целом, так и для большинства квазиоднородных районов, кроме I, II, III и IX (в табл. 3).

В период с 1976 по 2016 г. на значительной части страны обнаружена тенденция уменьшения продолжительности залегания снежного покрова: на большей части ЕЧР, на севере и юге Западной Сибири, Таймыре и северо-западе Республики Саха (Якутия). В среднем для России число дней со снегом сокращается на 1,01 дня за 10 лет (в табл. 3). Сохраняется тенденция увеличения числа дней со снежным покровом в Забайкалье, на северном побережье Охотского моря, на южном и центральном Урале.

Тенденции изменений максимального за зиму запаса воды в снеге с 1976 по 2016 г. по данным маршрутных наблюдений в поле остались практически такими же, как и за период 1976-2015гг. Наблюдается увеличение в центральных районах ЕЧР, северных и южных районах Западной Сибири, на Камчатке, Сахалине и в Приморье. Средний для страны в целом запас воды в снеге по данным маршрутных снегосъемок в поле увеличивается на 1,84 мм за 10 лет. По данным маршрутных наблюдений в лесу на территории России преобладают тенденции уменьшения максимального за зиму запаса воды в снеге. В Прикамье, Восточной Сибири, на севере Якутии выделяются отдельные области с положительными значениями коэффициентов линейного тренда. Наиболее обширная зона положительных коэффициентов линейного тренда охватывает южные районы Хабаровского края, Приморье и Сахалин. При оценке региональных изменений получено, что на Дальнем Востоке (район VII) запас воды в снеге в лесу увеличивается более чем на 7 мм за 10 лет (табл. 1). В I, IV и V получены значимые отрицательные тренды запаса воды в снеге по данным снегосъемок по лесным маршрутам. И в целом по России запас воды в снеге в лесу уменьшается примерно на 2 мм за 10 лет.

Таблица 3. Оценки линейного тренда (статистически значимые на 5%ном уровне значимости) регионально осредненных характеристик снежного покрова для регионов России за 1976—2016гг.

Регион	Hmax	Nd	SWEn	SWЕл
Россия	1,92	-1,01	1,84	-1,99
Север ЕТР и Западной Сибири	-	-	-	-6,50
Север Восточной Сибири и Якутии	-	-	-	-
Чукотка и север Камчатки	-	-	-	-
Центр ETP	1,63	-3,44	-	-6,52
Центр и юг Западной Сибири	1,75	-2,18	-	-6,02
Центр и юг Восточной Сибири	1,14	-		-
Дальний Восток	4,56	-	8,89	7,60
Алтай и Саяны	1,67	-	3,77	-
Юг ЕТР	-	-	-	-

Примечание: Hmax – максимальная за зимний период высоты снежного покрова, см/10 лет; Nd – число дней со снежным покровом дни/10лет; SWEп – запас воды в снеге (в поле), мм/10лет; SWEл – запас воды в снеге (в лесу) мм/10лет.

Выволы

Снежный покров играет важнейшую роль в формировании климата России. Созданная во ВНИИГМИ-МЦД технология мониторинга снежного покрова позволяет регулярно получать подробный анализ состояния снежного покрова на территории страны, оперативно отслеживать тенденции в изменении его характеристик. Результаты анализа помещаются в

ежегодный «Доклад об особенностях климата на территории Российской Федерации», который является официальным изданием Федеральной службы по гидрометеорологии и мониторингу окружающей среды, и могут использоваться для долгосрочных гидрологических прогнозов и планирования в различных отраслях экономики.

Поступила в редакцию 15.09.2017 г.

Список использованных источников

- 1. *Алисов Б.П.* Климат СССР. М.: Московский Университет, 1956. 127 с.
- 2. Булыгина О.Н., Коршунова Н.Н. Доклад об особенностях климата на территории Российской Федерации в 2016 году. Глава 3. Снежный покров зимой 2015/2016 гг. М.: Росгидромет, 2017. С. 23-28.
- 3. *Всемирная* климатическая программа 1988-1997 гг. Второй долгосрочный план ВМО // ВМО-№ 692, 1987.
- 4. *Груза Г.В., Ранькова Э.Я.* Мониторинг и вероятностный прогноз короткопериодных колебаний климата // 60 лет центру гидрометеорологических прогнозов. Л.: Гидрометеоиздат, 1989. С. 148-170.
- 5. Шакирзянов Р.И., Разуваев В.Н. Изменения в методиках наблюдения за состоянием снежного покрова на территории Российской Федерации // Труды ВНИИГ-МИ-МЦД, 2000. Вып. 167. С 41-51
- 6. GCOS, 2002: Guide to the GCOS surface and upper-air networks: GSN and Guan (version 1.1) GCOS -73 // WMO/TD-No. 1106. Geneva, September 2002.
- 7. Peterson T.C., Daan H., Jones P. Initial selection of a GCOS surface network // Bull. Am. Meteorol. Soc. Vol. 78. P. 2145-2152.
- 8. State of the Climate in 2014 // Bull. Amer. Meteor. Soc. Vol. 96(7). S201–S204.

SUMMARIES

Monitoring snow cover on the territory of Russia / Bulygina O.N, Korshunova N.N., Razuvaev V.N. // Proceedings of Hydrometcentre of Russia. 2017. Vol. 366. P. 87-96.

Described is the technology of snow cover monitoring in Russia, which was developed and is operational now in the RIHMI-WDC. The regional changes of the basic characteristics of snow cover (including the data for the 2016) were estimated and are presented in the article.

Keywords: monitoring, snow cover, the quasi-homogeneous climatic regions, regional characteristics, route snow surveys, snow depth, water storage in the snow.