МОДЕЛИРОВАНИЕ ВЛИЯНИЯ АГРОМЕТЕОРОЛОГИЧЕСКИХ УСЛОВИЙ НА ФОРМИРОВАНИЕ АГРОЭКОЛОГИЧЕСКИХ КАТЕГОРИЙ УРОЖАЙНОСТИ ОЗИМОГО РАПСА

А.Н. Полевой, Н.В. Васалатий

Одесский государственный экологический университет apolevoy@te.net.ua

Среди масличных культур рапс является одной из самых ценных культур, как по содержанию масла, так и по потенциальной урожайности. Площадь посевов рапса в мире достигает 24 млн га при средней урожайности 13-15 ц/га. Мировое производство этой культуры в 2011 году было на уровне 59,9 млн т [3].

Почвенно-климатические условия Украины благоприятны для нормального роста и развития растений озимого рапса и отвечают его биологическим особенностям. В частности, достаточно высокое плодородие почв, их удовлетворительная водо- и воздухопроницаемость, большое количество осадков и температурный режим способствуют при применении рекомендуемых агротехнических мероприятий получать свыше 40 ц/га семян [3].

В отечественных [1, 3, 4] и зарубежных исследованиях [9–12] представлены некоторые результаты изучения влияния погодных условий, сроков сева, густоты стояния, агротехнических мероприятий на рост, развитие, урожайность и масличность культуры озимого рапса. Рапс считается холодостойкой, влаго- и светолюбивой культурой. Оптимальная температура для прорастания 15–18 °C. Сумма эффективных температур воздуха выше 10 °C для получения дружных всходов культуры составляет 60–90 °C. Всходы могут переносить заморозки до минус 3–5 °C, а растения в фазе розетки – до минус 8 °C [4].

Весенняя вегетация рапса начинается через 10 дней после перехода среднесуточной температуры воздуха через 1,3 °C и почвы — через 2,9 °C. Через 10–15 дней наступает стеблевание и бутонизация, а еще через 20–25 дней — цветение. Наиболее благоприятная температура для роста вегетативной массы — 18–20 °C. Оптимальная температура в период цветения и созревания составляет 22–23 °C [3, 4]. Оптимальная влагообеспеченность растений озимого и ярового рапса обеспечивается при годовой сумме осадков 600–700 мм, удовлетворительная — при 500–600 мм. При сумме осадков за год ниже 400 мм, а также в засушливые годы урожай семян рапса существенно снижается. Культура рапса наиболее

чувствительна к недостатку воды в период интенсивного роста стебля и вегетативной массы [2–4].

Целью настоящей работы было экспериментальное исследование влияния агрометеорологических условий на фотосинтетическую продуктивность озимого рапса и моделирование этого влияния на уровни агроэкологических категорий урожайности этой культуры.

Методы исследования. В основу исследований положено сочетание комплексного биолого-агрометеорологического эксперимента по изучению фотосинтетической продуктивности озимого рапса и на этой основе моделирование формирования урожайности культуры.

Описание результатов. Программа полевого эксперимента включала ряд фенологических, метеорологических, агрометеорологических, биометрических, физиологических определений и наблюдений, необходимых для уточнения влияния факторов внешней среды на рост, развитие и формирование продуктивности озимого рапса и определения параметров модели. Проводились опыты с тремя сроками посева в четырехкратной повторности, площадь опытных участков 40 м². В качестве опытной культуры рассматривался озимый рапс вида Hybridwinterraps сорта Бальдра/NPZ 9800.

Полевые опыты проводились на наблюдательных участках учебной агрометеорологической лаборатории Одесского государственного экологического университета в осенне-зимние периоды 2009—2010 и 2010—2011 гг. и весенне-летние периоды 2010, 2011 гг.

Агрометеорологические условия осеннего периода вегетации озимого рапса в 2009 г. были менее благоприятными по сравнению с условиями 2010 года: сумма осадков в 2009 г. составила 65 мм по сравнению с 245 мм в 2010 г., а температура воздуха в 2009 г. была существенно ниже, что и обусловило различия в темпе формирования ассимиляционного аппарата и общей биомассы посева (рис. 1, 2).

Температурный режим и условия увлажнения в течение весенне-летнего периода вегетации озимого рапса в 2010 году были более благоприятными. Они характеризовались более высокими температурами воздуха (на 2–3 °C выше, чем в 2011 г.), большим количеством осадков за период (на 80 мм выше по сравнению с 2011 г.). Все это привело к значительным различиям показателей фотосинтетической продуктивности посевов (табл. 1). Большая площадь листьев и большие значения фотосинтетического потенциала в течение вегетационного периода 2010 года, несмотря на снижение из-за загущенных посевов,

значения чистой продуктивности фотосинтеза, обусловили более высокий уровень урожая общей биомассы и урожая зерна.

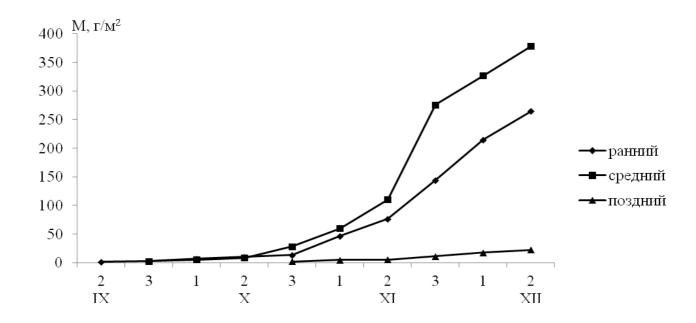


Рис. 1. Динамика накопления общей сухой биомассы M растений озимого рапса разных сроков сева в осенне-зимний период вегетации 2009 г.

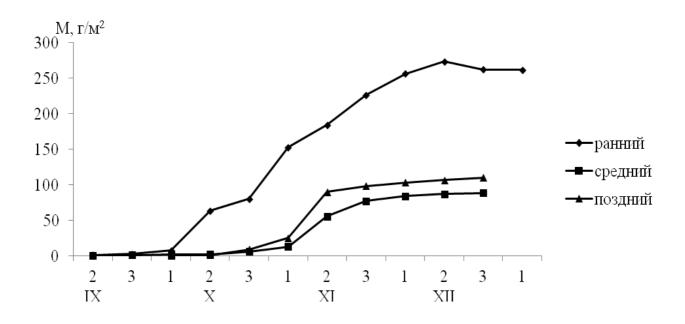


Рис. 2. Динамика накопления общей сухой биомассы M растений озимого рапса разных сроков сева в осенне-зимний период вегетации 2010 г.

Год	Срок	Густота	Макси-	Фотосин-	Максимальная	Урожай	
	сева	посева,	мальная	тетический	чистая	общей	зерна,
		растений/м ²	площадь	потенциал за	продуктивн.	биомассы,	г/м ²
			листьев,	вегетацию,	фотосинтеза,	Γ/M^2	
			\mathbf{M}/\mathbf{M}^2	M^2/M^2	г/(м ² ·дек)		
2010	ранний	75	7,2	465	7,3	660	264
	средний	72	7,3	491,3	6,6	720	288
	поздний	73	5,6	243,1	7,1	578	232
2011	ранний	53	4,7	179,1	14,2	328	150
	средний	52	2,7	140,9	12,3	560	225
	поздний	50	1,6	90,8	17,7	475	190

На основе полученных результатов полевых экспериментов с посевами озимого рапса и базовой модели оценки агроклиматических ресурсов формирования продуктивности сельскохозяйственных культур, разработанной нами [5] на основе концепции максимальной продуктивности посевов Х.Г. Тооминга [8] и результатов моделирования формирования урожая сельскохозяйственных культур, полученных в наших работах [6, 7], выполнено моделирование формирования различных агроэкологических категорий урожайности этой культуры. Предложенная модель имеет блочную структуру и содержит шесть блоков: блок входной информации; блок показателей солнечной радиации и водно-температурного режима; блок функций влияния фазы развития и метеорологических факторов на продукционный процесс растений; блок плодородия почвы и обеспеченности растений минеральным питанием; блок агроэкологических категорий урожайности; блок обобщающих оценочных характеристик. Рассмотрим более подробно блок агроэкологических категорий урожайности.

Определим величины различных агроэкологических категорий урожайности с учетом внесенных нами модификаций, с привлечением более полной информации и наполнения этих категорий новым содержанием.

Приращение потенциальной урожайности за декаду определялось в зависимости от интенсивности фотосинтетически активной радиации (ФАР) и биологических особенностей культуры с учетом изменения способностей растений к фотосинтезу в течение вегетации

$$\frac{\Delta\Pi Y^{j}}{\Delta t} = \alpha_{\phi}^{j} \frac{\eta \cdot Q_{\phi ap}^{j} \cdot dv^{j}}{q}, \qquad (1)$$

где $\frac{\Delta\Pi\mathcal{Y}}{\Delta t}$ — прирост потенциальной урожайности за декаду; j — номер расчетной декады; α_{ϕ} — онтогенетическая кривая фотосинтеза; η — КПД посевов; $Q_{\phi ap}$ — интенсивность Φ AP; dv — число дней в расчетной декаде; q — калорийность.

Прирост метеорологически возможной урожайности представляет собой прирост потенциальной урожайности, который будет ограничен влиянием водно-температурного режима:

$$\frac{\Delta MBV^{j}}{\Delta t} = \frac{\Delta \Pi V^{j}}{\Delta t} \cdot FTW_{2}^{j} , \qquad (2)$$

где $\frac{\Delta MBV}{\Delta t}$ — прирост метеорологически возможной урожайности; FTW_2 — обобщенная функция влияния водно-температурного режима с коррекцией на сочетание различных экстремальных условий.

Эта функция определяется по принципу Либиха с учетом влияния температуры воздуха и условий увлажнения на продукционный процесс и возможного сочетания уровня температуры воздуха и различной влагообеспеченности.

$$FTW_{2} = \begin{cases} FTW_{1}[1 + (1 - \psi_{\phi})(1 - FW) & \text{при } t < t_{opt1} \\ FTW_{1} & \text{при } t_{opt1} \le t \le t_{opt2} \\ FTW_{1}[1 - (1 - \psi_{\phi})(1 - FW)] & \text{при } t > t_{opt2} \end{cases}$$

$$(3)$$

где FTW_1 — обобщенная функция влияния термического режима и влагообеспеченности на фотосинтез; ψ_{δ} — температурная кривая фотосинтеза; FW — относительная влагообеспеченность посевов; t — среднедекадная температура воздуха; t_{opt1} — нижняя граница температурного оптимума для фотосинтеза; t_{opt2} — верхняя граница температурного оптимума для фотосинтеза.

Функция влияния влагообеспеченности посевов FW нами рассматривалась как сочетание двух функций: учитывалась функция влияния влажности почвы на продуктивность растений (по данным о фактических запасах влаги) и отношение суммарного испарения посевов к испаряемости

$$FW = \left(\gamma_{\phi}^{j} \cdot \frac{E^{j}}{E_{\theta}}\right)^{0.5},\tag{4}$$

где γ_{ϕ} – функция влияния влажности почвы на фотосинтез; E – суммарное испарение; E_{0} – испаряемость.

Аналогично определяем обобщенную функцию влияния термического режима и влагообеспеченности FTW_1 на фотосинтез

$$FTW_I = (\psi_d \cdot FW)^{0.5} \,. \tag{5}$$

Формирование действительно возможной урожайности ограничивается уровнем естественного плодородия почвы

$$\frac{\Delta IBY^{j}}{\Delta t} = \frac{\Delta MBY^{j}}{\Delta t} \cdot B_{nn} \cdot FH , \qquad (6)$$

где $\frac{\Delta \mathcal{A}BV}{\Delta t}$ — прирост действительно возможной урожайности; B_{nn} — балл почвенного бонитета; FH — функция влияния содержание гумуса в почве.

Получение уровня хозяйственной урожайности ограничивается реально существующим уровнем культуры земледелия и эффективностью внесенных минеральных и органических удобрений:

$$\frac{\Delta V\Pi^{j}}{\Delta t} = \frac{\Delta \Pi B V^{j}}{\Delta t} \cdot k_{3emn} \cdot FW_{ef}^{j}, \tag{7}$$

где $\frac{\Delta V\Pi}{\Delta t}$ — прирост урожайности в производстве; k_{3emn} — коэффициент, который характеризует уровень культуры земледелия и хозяйственной деятельности; FW_{ef} — обобщенная функция эффективности внесения органических и минеральных удобрений в зависимости от условий влагообеспеченности декад вегетации. Последнюю определяем как:

$$FW_{ef}^{j} = min \left\{ FW_{org}^{j}, FW_{N}^{j}, FW_{P}^{j}, FW_{K}^{j} \right\}, \tag{8}$$

где FW_{org} — функция влияния внесения органических удобрений на урожай; $FW_{\rm N}$, $FW_{\rm P}$ и $FW_{\rm K}$ — функции влияния обеспеченности посевов азотом, фосфором и калием соответственно.

Наконец, вычислим различные агроэкологические категории урожая зерна при его стандартной 14%-ной влажности.

$$\Pi Y_{3epha} = \Pi Y \cdot K_{xo3} \cdot 1{,}14 \cdot 0{,}1, \tag{9}$$

где ΠY_{3epha} – потенциальный урожай зерна; K_{xo3} – доля зерна в общей массе урожая.

Аналогично определяем соответственно метеорологически возможный $MBV_{3ерна}$, действительно возможный $\mathcal{A}BV_{3ернa}$ и урожай в производстве $\mathcal{V}\Pi_{3ернa}$ зерна.

Анализ разнообразных агроэкологических категорий урожайности (ΠV , MBV, ΔJBV , $V\Pi$), а также их соотношений и отличий позволяет судить о природных и антропогенных ресурсах сельского хозяйства, а также об эффективности хозяйственного использования этих ресурсов. Рассмотрим пять обобщенных характеристик.

1. Степень благоприятности метеорологических условий возделывания культуры характеризует соотношение MBV и ΠV

$$K_{u} = MBY / \Pi Y, \tag{10}$$

где $K_{\scriptscriptstyle M}$ – коэффициент благоприятности метеорологических условий.

2. Благоприятность почвенных условий отражает отношение ДВУ и МВУ

$$K_n = ABY / MMB, \tag{11}$$

где K_n – коэффициент благоприятности почвенных условий.

3. Соотношение $У\Pi$ и MBV устанавливает эффективность использования агроклиматических ресурсов. Если это соотношение рассчитано по средним многолетним данным, то оно отражает эффективность использования агроклиматических ресурсов

$$K_{appo \, \kappa \pi \mu \mu} = Y\Pi / MMB, \tag{12}$$

где $K_{azpo.\kappa лим}$ — коэффициент эффективности использования агроклиматических ресурсов.

4. При реальных почвенных условиях соотношение ${\it У\Pi}$ и ${\it ДВУ}$ можно рассматривать как показатель совершенной агротехники

$$K_{2ann} = Y\Pi / \Pi BY, \tag{13}$$

где $K_{3eмл}$ — коэффициент эффективности использования существующих агрометеорологических и почвенных условий (характеризует уровень культуры земледелия с точки зрения эффективности хозяйственного использования существующего комплекса агрометеорологических и почвенных условий.

5. Величина $V\Pi$ отнесенная к ΠV характеризует уровень реализации агроэкологического потенциала:

$$K_{appo,nom} = Y\Pi / \Pi Y, \tag{14}$$

где $K_{azpo\ nom}$ — коэффициент реализации агроэкологического потенциала.

В качестве иллюстрации работы модели рассмотрим ход декадных интенсивностей ФАР за весенне-летний вегетационный период и динамику приростов потенциальной урожайности ΠY озимого рапса в правобережной части Степи Украины. Вначале возобновления вегетации уровень интенсивности ФАР составляет 0,171 кал/см²мин, а прирост ΠY , как видно из рис. 3, составляет 101,0 г/м²дек. Начиная с фазы начала стеблевания показатели приростов постепенно растут и достигают максимума в фазе цветения 0,276 кал/см²мин и 381,8 г/м²дек. соответственно. В следующие декады вегетации наблюдается плавный спад, как одного, так и другого показателей. Только в фазе образования стручков созревание интенсивность ФАР резко возрастает и составляет 0,371 кал/см²мин, в конце вегетационного периода этот показатель снижается до 0,288 кал/см²мин. Приросты ΠY в предпоследней декаде вегетации резко поднимаются до отметки 433,9 г/м²дек., а в фазу созревания резко уменьшаются и составляют 103,4 г/м²дек.

Рис. 3. Динамика интенсивности ФАР и декадных приростов ПУ озимого рапса в правобережной части Степи Украины в весенне-летний период вегетации.

Прирост метеорологически возможной урожайности определяется приростом ΠY и влиянием водно-температурного режима. Кривая хода среднедекадной температуры воздуха (рис. 4) начинается с отметки 2,4 °C, а прирост MBY в начальный период вегетации составляет 53,6 г/м 2 дек. В течение весенне-летнего периода кривая хода среднедекадной

температуры воздуха плавно растет и в фазу созревания достигает отметки 21,4 °C. Кривая приростов MBV несколько отличается от кривой хода среднедекадной температуры воздуха. Так, в фазу начала стеблевания она резко поднимается до отметки 178,2 г/м²дек., а в фазу цветения составляет 365,9 г/м²дек. В последующие периоды вегетации наблюдается плавный спад, и только в предпоследнюю фазу вегетации происходит подъем кривой до отметки 404,6 г/м²дек. Кривая приростов MBV достигает своего минимума в фазу созревания и составляет 96,4 г/м²дек.

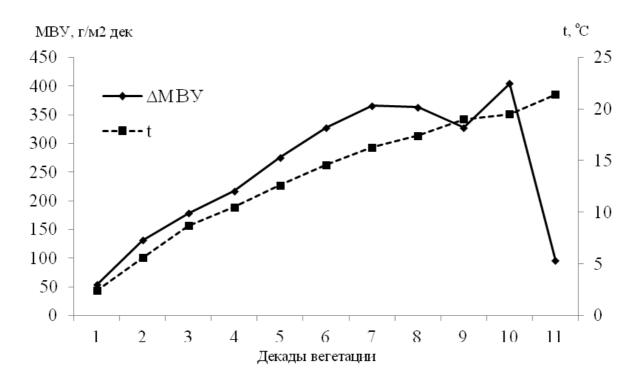


Рис. 4. Декадный ход температуры воздуха и приростов метеорологически возможного урожая озимого рапса в правобережной части Степи Украины в весенне-летний период вегетации.

В качестве примера в табл. 2 приведены обобщающие характеристики агроклиматических условий возделывания и продуктивности озимого рапса в Степи Украины.

Повышение уровня $V\Pi$ и доведение его до уровня $\mathcal{L}BV$ требует тщательного соблюдения всех необходимых способов агротехники, выполнения их в полном соответствии с агрометеорологическими условиями на конкретном поле. Это является первоочередной задачей программирования урожаев, направленной на устранение лимитирующего действия разнообразных хозяйственных факторов. Приближение $\mathcal{L}BV$ к

MBV требует выполнения работ по повышению плодородия почвы. Разница между MBV и ΠV компенсируется за счет мелиоративных мероприятий, а также вследствие правильного подбора сортов, которые лучше приспособлены к особенностям конкретного климата. Повышение уровня ΠV обеспечивается главным образом путем селекции новых сортов, которые будут иметь более высокий уровень урожайности за счет эффективного использования солнечной радиации.

Таблица 2 Обобщенные характеристики агроклиматических условий возделывания и продуктивности озимого рапса в Степи Украины в весенне-летний период вегетации

Обобщенные показатели за период	Правобережная Степь		Левобережная Степь	
вегетации	северная	канжы	северная	южная
Сумма активных температур выше 10 °C	1463	1508	1473	1416
Сумма ФАР, МДж/м ²	1005,6	1022,4	938,6	1009,8
Продолжительность периода вегетации, дни	108	108	103	103
Сумма осадков, мм	197	160	190	164
Потребность растений во влаге, мм	336	331	368	332
Суммарное испарение, мм	212	192	239	198
$K_{\scriptscriptstyle M}$, отн.ед.	0,939	0,937	0,963	0,922
$K_{\text{агро клим}}$, отн.ед.	0,313	0,294	0,365	0,284
$K_{arpo\ nom}$, отн.ед.	0,411	0,323	0,520	0,360
$K_{\scriptscriptstyle 3eM3}$, отн.ед.	0,490	0,464	0,490	0,475
<i>П</i> У₃ерна, ц/га	69	55	48	57
<i>МВУ</i> _{зерна} , ц∕га	65	52	46	53
<i>ДВУ</i> _{зерна} , ц/га	41	33	34	31
<i>УП</i> _{зерна} , ц/га	20	15	16	15

Список использованных источников

- 1. *Адаменко Т.М.* Агрокліматичні умови вирощування ріпаку в Україні // Агроном. 2006. № 2. С. 94—95.
- 2. Гайдаш В.Д., Дем'янчук Г.Т., Ковальчук Г.М. Ріпак культура великих можливостей. Ужгород, 1999. 69 с.
 - 3. *Марков І.Л.* Інтенсивна технологія вирощування ріпаку // Агрономія сьогодні. -2011. -№ 10.
- 4. *Озимий* ріпак в Степу України / В.Я. Щербаков, С.Г. Нереуцький, М.В. Боднар та ін. / За заг. ред. В.Я. Щербакова. Одеса: «ІНВАЦ», 2009. 184 с.
- 5. *Полевой А.Н.* Базовая модель оценки агроклиматических ресурсов формирования продуктивности сельскохозяйственных культур // В сб.: Метеорология, климатология и гидрология. –

- 2004. № 48. C. 195–205.
- 6. *Полевой А.Н.* Прикладное моделирование и прогнозирование продуктивности посевов. Л.: Гидрометеоиздат, 1988. 320 с.
- 7. Полевой А.Н. Теория и расчет продуктивности сельскохозяйственных культур. Л.: Гидрометеоиздат, 1983. 175 с.
- 8. *Тооминг Х.Г.* Экологические принципы максимальной продуктивности посевов. Л.: Гидрометеоиздат, 1984. 264 с.
- 9. Evans E.I., Ludeke F. Effect of sowing date on oil-seed rape cultivars // Ann. Appl. Biol. 1987 Vol. 110. P. 170–171.
- 10. *Geisler G., Stoy A.* Untersuchungen zum Einfluss der Bestandesdichte auf des Ertragspotential von Rapspflanzen // J. Agron. Crop Sc. 1987. No 4. P. 232–240.
- 11. *Lauten H.* Ertvagshohe und Qulitat schon bei der Aussat beein flussen // Landw. Z. Rheinland. 1988. No 8. P. 155–156.
- 12. Rimantas VELIČKA, Nijolė ANISIMOVIENĖ, Rita PUPALIENĖ, Jurga JANKAUSKIENĖ, Lina Marija BUTKEVIČIENĖ, Zita KRIAUČIŪNIENĖ .Preparation of oilseed rape for over-wintering according to autumnal growth and cold acclimation period // Žemdirbystė: Agriculture, 97. 2010. No 3 P. 69–76.

Поступила в редакцию 08.04.2013 г.