ПРОГНОЗ КАТЕГОРИЙ ОПАСНОСТИ МЕТЕОРОЛОГИЧЕСКИХ ЯВЛЕНИЙ

М.В. Ширяев, К.Г. Рубинштейн

Гидрометеорологический научно-исследовательский центр Российской Федерации mr.felixoid@gmail.com

Задача надежного прогноза опасного метеорологического явления (ОЯ), то есть прогноза редкого явления в определенной точке в конкретный момент времени, является сложнейшей задачей на современном этапе численного прогнозирования. В данной работе рассматривается несколько иная задача, а именно прогноз категорий степени опасности явлений, возникновение которых может ожидаться на некоторой территории в определенном интервале времени. Такая задача представляется более реализуемой и может быть верифицирована, например, по метеорологическим станциям.

В настоящее время существуют различные технологии прогноза опасных явлений. В Гидрометцентре России разработаны два независимых метода прогнозирования шквалов и смерчей. По методу А.А. Алексеевой [1] прогноз шквалов в градации ОЯ осуществляется с помощью дискриминантной функции. Гидрометеорологические предупреждения составляются вручную синоптиками Гидрометцентра России с учетом результатов работы прогностических моделей и синоптического опыта. Для прогноза сильных и штормовых ветров по методу Э.В. Переходцевой [3] используется статистическая модель диагноза и прогноза этих явлений. Также в Гидрометцентре России выпускаются предупреждения об ОЯ по типу «ALARM» для Центрального и Северо-Западного федеральных округов России, для Мурманской области и Краснодарского края.

Объединенное средство оповещения населения для европейских стран «ALARM» (http://meteoalarm.eu) работает по следующему принципу: все участники программы (32 метеоцентра стран Европы) рассчитывают по собственным алгоритмам вероятность возникновения различных метеорологических опасностей. В результате информация о возможности возникновения опасной ситуации отправляется на общий сайт, который и формирует карту предостережений для всей Европы. При выборе интересующей страны осуществляется переход на карту страны с подробным описанием типов ожидаемых явлений по областям. По информации некоторых национальных метеорологических центров, не существует единых алгоритмов расчетов вероятности возникновения опасности.

Особенности работы системы "ALARM" в различных странах Европы

Для различных стран (и даже регионов) характерно возникновение опасных метеорологических явлений различного рода и интенсивности. В табл. 1 представлена сводная информация о явлениях, категории опасности которых прогнозируются некоторыми метеослужбами Европы.

Метеоцентры	Сильный ветер	Интенсивный снег / гололёд	Грозы	Туман	Экстремально высокая температура	Экстремально низкая температура	Прибрежные явления	Лесные пожары	Лавины	Ливни и интенсивные дожди
DWD, Германия	x	x	x		x	X				X
HNMS, Греция	X	X	X	X	X	X		X		X
Met.no, Норвегия	x		x	x	x	X	X	Х	X	X
SMHI, Швеция	x	х	x				Х	Х		X
Гидрометцентр России	X	х	X	X	X	Х		Х		х

Прогноз категорий ОЯ в метеослужбе Германии (DWD)

Критерии категорий опасности для всей страны являются одинаковыми, лишь для горных районов приняты специальные критерии оценки категорий опасности снегопадов. Даются предупреждения: по 1) сильному ветру; 2) интенсивному снегопаду; 3) грозам; 4) экстремально высоким и 5) экстремально низким температурам; 6) сильным дождям; 7) туманам; 8) озёрным и прибрежным морским явлениям; 9) гололёду; 10) оттепели. В настоящее время предупреждения в основном даются «в ручном режиме», а также используется процедура наукастинга для поддержания или опровержения предупреждений. Разрабатывается полуавтоматическая процедура предупреждений. Критерии определения границ категорий опасности метеорологических явлений представлены в табл. 2.

Информация по категориям опасности метеорологических явлений любезно предоставлена д-ром Christa Stein, сотрудником метеослужбы Германии.

Метеорологическое явление	Критерии границ категорий опасности				
Порывы ветра на высоте 10 м	14-17 m/c 18-24 m/c 25-28 m/c				
Гроза	молния, порывы ветра молния, шквалы или сильные шквалы				
Сильный дождь	$10\text{-}25 \text{ л/м}^2$ в течение 1 часа $20\text{-}35 \text{ л/m}^2$ в течение 6 часов				
Непрерывный дождь	$25-40 \text{ л/m}^2$ в течение 12 часов $30-50 \text{ л/m}^2$ в течение 24 часов $40-60 \text{ л/m}^2$ в течение 48 часов				
Небольшой снег	до 5 см в течение 6 часов до 10 см в течение 12 часов (на высотах более 800 м иные критерии)				
Снегопад	5-10 см в течение 6 часов 10-15 см в течение 12 часов (на высотах более 800 м до 30 см в течение 12 часов)				
Метель	снегопад или свежевыпавший снег при скорости ветра 11-17 м/с (на высотах более 800 м иные критерии)				
Обледенение	гололедица				
	гололёд				
Оттепель	таяние снега: $25\text{-}40 \text{ л/m}^2$ за 12 часов $30\text{-}50 \text{ л/m}^2$ за 24 часов $40\text{-}60 \text{ л/m}^2$ за 46 часов				
Туман	видимость менее 150 м				
Заморозок	в период с 01.04 по 31.10 каждого года понижение температуры ниже $0^{\circ}\mathrm{C}$				
Мороз	температура ниже -10 °C (на высотах более 800 м иные критерии)				

Прогноз категорий ОЯ в метеослужбе Греции

По границам категорий опасности ОЯ страна поделена на различные регионы в зависимости от вида опасного метеорологического явления. Границы категорий опасности принимаются в зависимости от повторяемости явления.

Потенциально опасным считается явление, встречающееся более 30 раз в год, опасным – явление, встречающееся от 1 до 30 раз в год, очень опасным – менее одного раза в год.

Границы категорий опасности метеорологических явлений, принятые в метеослужбе

Греции, приведены в табл. 3.

Данные были любезно предоставлены сотрудником Греческой национальной метеорологической службы Panagiotis Skrimizeas.

Явление		Категория опасности					
Явление		Зелёная	Желтая	Оранжевая	Красная		
Ветер (км/ч)		< 60	60 80	80100	≥ 100		
Порывы ветра (км/ч)		< 80	80 110	110 130	≥ 130		
	1 группа регионов	< 20	20 60	60 100	≥ 100		
Осадки (мм/24 ч)	2 группа регионов	< 15	15 40	40 75	≥ 75		
Occurry (1994/12 m)	1 группа регионов	< 15	15 50	50 80	≥ 80		
Осадки (мм/12 ч)	2 группа регионов	< 10	10 30	30 60	≥ 60		
Экстремальная жара (°C)	Сев. Греция - Эпир	< 35	35 39	39 42	≥42		
	Цент. и Вост. Греция	< 37	37 41	41 44	≥44		
	Островная территория	< 33	35 37	37 40	≥40		
	Сев. Греция - Эпир	> -5	-58	-815	≤-15		
Экстремальные морозы (°С)	Цент. и Вост. Греция	> -1	-14	-48	≤-8		
	Островная территория	> 0	02	-25	≤ -5		
Снег (высота, см)	Сельская местность	Нет	0 5	5 25	> 25		
	Городская местность	Нет	0 2	2 10	> 10		
Туман (видимость, м)		≥ 500	100 500	50 100	< 50		
Пожарная опасност	Параметр определен органом гражданской защиты						

Примечание: 1-я группа регионов — Восточная Греция, северо-восточные Эгейские острова, Додеканес; 2-я группа регионов — Северная Греция, восток Центральной Греции, Фессалия, Пелопоннес, Цикладские острова, Крит.

Прогноз категорий ОЯ в метеослужбе Норвегии

Метеослужба Норвегии особое внимание уделяет прибрежным явлениям – штормовым нагонам. Существует 18 различных границ категорий опасности этого явления в зависимости от региона («потенциально опасная» категория – от 145 до 395 см относительно нулевого уровня моря, «опасная» – от 170 до 430 см, «очень опасная» – от 190 до 450 см). Также

существует единый критерий опасности для всех регионов – подъем уровня воды вследствие шторма выше значений, представленных в нормативном документе «Приливные таблицы».

Зависят также от региона границы категорий опасности ОЯ: для ветра колеблются в диапазоне 20-28 м/с для «потенциально опасной» категории, 24–32 м/с – для «опасной» и свыше 28–32 м/с – для «экстремальной» категории; для обильных дождей, например, «очень опасная» категория имеет нижнюю границу от 45 до 140 мм/24 ч. Остальные категории опасности едины для всей территории страны.

Метеослужбой Норвегии выпускаются прогнозы категорий дорожных опасностей: «потенциально опасная» — если был выпущен прогноз с «опасной» категорией опасности любого явления для данного региона; «опасная» — либо при одновременном прогнозе сильного ветра в «потенциально опасной» градации и обильных осадков в опасной градации, либо при прогнозе ледяного дождя или измороси свыше 1 мм; «очень опасная» — при одновременном прогнозе сильного ветра в опасной градации и обильных осадков в «опасной» либо «очень опасной» категории.

Метеослужба Норвегии также выпускает прогнозы пожароопасности, схода лавин, гроз, туманов, экстремально высоких и низких температур.

Таблицу границ категорий опасностей метеорологических явлений любезно предоставил сотрудник Норвежской метеослужбы Dag Roger Kristoffersen.

Прогноз категорий ОЯ в метеослужбе Швеции

По информации сотрудника Шведского института метеорологии и гидрологии Weine Josefsson при определении категории опасности различных явлений используются различные модели, поэтому отсутствуют статические методы определения опасностей.

В метеослужбе Швеции границы категорий опасности метеорологических явлений определены по их повторяемости [6]. Для обозначения категории опасности приняты классы от 1 до 3, соответствующие категориям от «потенциально опасно» до «экстремально опасно». Для 1-го класса опасности приняты границы, соответствующие повторяемости ОЯ в среднем раз в 2 года, для 2-го класса — раз в 10 лет, для 3-го — раз в 50 лет. Вследствие этого все границы категорий опасности, по сравнению с большинством других метеоцентров, имеют гораздо более высокие критерии. Например, на равнинной местности опасности 1-го класса соответствует средний ветер со скоростью 21 м/с и более. Для всей страны характерно разделение на три различных типа местности: морская, равнинная и горная. Даются предупреждения по следующим явлениям:

морские и прибрежные территории: сильный ветер, большой прилив, большой отлив,

обледенение судов;

- равнинные территории: порывы ветра, снегопад, обледенение, обильные дожди, сильные грозы, затопление, высокий уровень воды в озерах, полевые и лесные пожары;
- горные территории: сильный ветер при низкой температуре, сильный ветер при метели и осадках, очень сильный ветер.

Прогноз категорий ОЯ в метеослужбе России

В настоящее время в ФГБУ «Гидрометцентр России» существует несколько независимых технологий (методов) прогноза категорий опасности метеорологических явлений. Одна из них, разработанная отделом краткосрочных прогнозов погоды Гидрометцентра России, используется для двух регионов: Северо-Западного и Центрального федеральных округов (СЗФО и ЦФО). Принцип работы данной системы описан в [2].

Система отображения категорий опасности метеорологических явлений показывает информацию по следующим явлениям: ветер, снег, гроза, туман, экстремально низкие и высокие температуры, дождь, пожары, заморозки. Критерии определения категорий опасности для ЦФО приведены в табл. 4. «Спокойная» категория опасности соответствует зелёной, «потенциально опасная» — желтой, «опасная» — оранжевой и «очень опасная» — красной категории опасности метеорологического явления

Таблица 4
Критерии определения категорий опасности метеорологических явлений для
Центрального федерального округа [2]

Метеорологическое явление	Категория опасности					
метеорологическое явление	зеленая	желтая	оранжевая	красная		
Ветер, м/с	< 12	1214	1524	>25		
Дождь/мокрый снег, мм/12 ч	< 7	79	1049	> 50		
Снег, мм/12 ч	< 3	34	519	>20		
Заморозки (минимальная суточная температура воздуха в летнее время), °С	> 3	23	12	< 1		
Температура, °С	> -20 < 25	-2520 2530	-3025 3035	<-30 > 35		
Туман (видимость, м)	> 600	300600	50300	< 50		

Для различных областей ЦФО месяцы, когда падение температуры ниже значений, указанных в табл. 4, считается заморозками, изменяется в зависимости от географического расположения: с марта по сентябрь — для южных регионов и с апреля по сентябрь — для средних и северных.

Другая технология (метод) прогноза категорий опасных метеорологических явлений [5] разработана лабораторией моделирования общей циркуляции атмосферы и климата отдела долгосрочных прогнозов погоды Гидрометцентра России. Этот метод основан на полярной версии гидродинамической модели WRF-ARW, по выходным метеорологическим полям которой определяются категории опасности прогнозируемых явлений. Критерии категорий опасности метеорологических явлений для Мурманской области представлены в табл. 5.

Таблица 5. Критерии определения категорий опасности метеорологических явлений для Мурманской области [5]

	Категория опасности					
Метеорологическое явление	спокойная	потенциально- опасная	опасная	очень опасная		
Ветер, м/с	< 8	8 14	14 25	≥ 25		
Дождь, мм/12 ч	< 7	7 15	15 50	≥ 50		
Снег, мм/12 ч	< 3	3 6	6 20	≥ 20		
Мороз, °С	> -35	-40 - 35	-4540	≤ -45		
Жара, °С	< 20	20 25	25 30	≥ 30		

Сравнение качества прогнозов категорий ОЯ двумя методами для Мурманской области и ЦФО

Для получения оценок качества авторами используется следующий алгоритм: данные прогнозов (явление и категория его опасности, прогнозируемое по областям для временного интервала) сравниваются с соответствующими данными станционных метеорологических наблюдений. Оценки качества прогнозов определяются отдельно для каждого района, каждой заблаговременности и каждой категории в соответствии с [4].

Для расчета показателей успешности прогнозов категорий ОЯ заполняется таблица сопряженности (табл. 6).

Протугор	Фактическое коли	Canada		
Прогноз	с ОЯ без ОЯ		Сумма	
С ОЯ	n ₁₁	n ₁₂	n ₁₀	
Без ОЯ	n ₂₁	n ₂₂	n ₂₀	
Сумма	n ₀₁	n ₀₂	n 00	

Таблица сопряженности

где n_{11} — число оправдавшихся прогнозов явления; n_{12} — число не оправдавшихся прогнозов явления; n_{10} = n_{11} + n_{12} — число прогнозов явления; n_{21} — число не оправдавшихся прогнозов отсутствия явления; n_{22} — число оправдавшихся прогнозов отсутствия явления; n_{20} = n_{21} + n_{22} — число прогнозов отсутствия явления; n_{01} = n_{11} + n_{21} — число фактов наличия явления; n_{02} = n_{21} + n_{22} — число фактов отсутствия явления; n_{00} = n_{10} + n_{20} = n_{01} + n_{02} — общее количество прогнозов/фактов явления.

По элементам табл. 6 для анализа успешности прогнозов рассчитываются следующие характеристики:

$$U_{_{\it H}} = \frac{n_{_{11}}}{n_{_{10}}} \cdot 100$$
 - оправдываемость прогноза наличия явления, %;

$$T_1 = \frac{n_{11}}{n_{01}} - \frac{n_{12}}{n_{02}}$$
 - критерий Пирси-Обухова (вариант 1);

$$T_2 = \frac{n_{22}}{n_{02}} - \frac{n_{21}}{n_{01}}$$
 - критерий Пирси-Обухова (вариант 2).

Табл. 6 заполняется отдельно для каждой категории опасности (см. табл. 5) в отдельности по алгоритму, представленному на рис. 1, где f — категория опасности по данным прогноза, s — категория опасности по станционным данным (максимальное зарегистрированное значение метеорологического элемента), d — категория опасности, для которой составляется таблица сопряженности. Если по каким-то причинам отсутствуют данные прогноза либо наблюдений на метеорологических станциях для рассматриваемого района, то данный срок не учитывается при получении статистики за длительный период.

Посчитанные разными вариантами критерии Пирса-Обухова тождественно равны при условии, что таблица сопряженности не имеет нулевых значений. Если же матрица не заполнена полностью, то T_1 характеризует качество прогнозов наличия явлений, а T_2 – качество прогноза отсутствия.

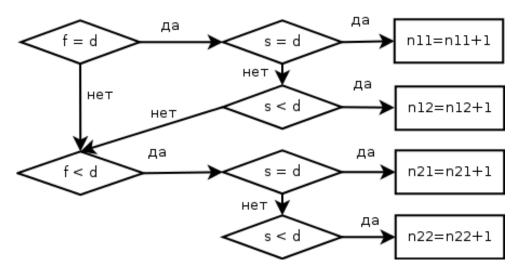


Рис 1. Определение элементов таблицы сопряженности.

С февраля 2012 года началось накопление базы данных прогнозов категорий ОЯ для ЦФО и СЗФО по методу [2] для сравнительной оценки качества прогнозов различными методами. Была получена статистика качества прогнозов категорий опасности метеорологических явлений ЦФО для периода с 10.02.2012 по 25.03.2012 г. следующих опасных явлений: сильный ветер, обильные снегопады и дожди, экстремально низкая температура. Для аналогичного периода была составлена статистика оценок для прогнозов по Мурманской области [5].

Очевидно, что сравнение статистики прогнозов по различным регионам не является представительным, так как районы, для которых определяются категории опасности, имеют различную площадь; за рассматриваемый период в различных регионах категории опасности имеют различную повторяемость; критерии определения опасности не идентичны. Анализ статистики качества прогнозов выполняется с единственной целью — определить, насколько качественными являются прогнозы категорий опасности метеорологических явлений по технологии [5], по сравнению с другими методами.

Для сравнения показателей качества прогнозов категорий опасности были выбраны наиболее освещенные метеорологическими станциями районы. Это условные Печенгский, Кольский морской, Кольский континентальный и Центральный районы для Мурманской области; Воронежская, Курская, Московская, Тамбовская и Тверская области для ЦФО.

На рис. 2 приведено сравнение оправдываемости, на рис. 3 – критерия Пирси-Обухова (рассчитанного по двум вариантам) прогнозов категорий сильных ветров для двух методов. Видно, что для метода [5] эти характеристики выше, чем для метода [2]. Для Мурманской области критерии Пирси-Обухова (рис. 3а и 3в) похожи, для ЦФО (рис. 3б и 3г) они заметно отличаются. Это свидетельствует о том, что таблица сопряженности (табл. 6) для данного

региона имеет неполное несимметричное заполнение в основном в строке «прогноз без ОЯ».

На рис. 4 и 5 изображены те же характеристики качества для прогнозов категорий сильных морозов на территории ЦФО. На территории Мурманской области за рассматриваемый период сильные морозы не наблюдались и не прогнозировались. Оправдываемость и критерии Пирси-Обухова для данного периода показывают достаточно неплохое качество прогнозов категорий опасности по методу [2].

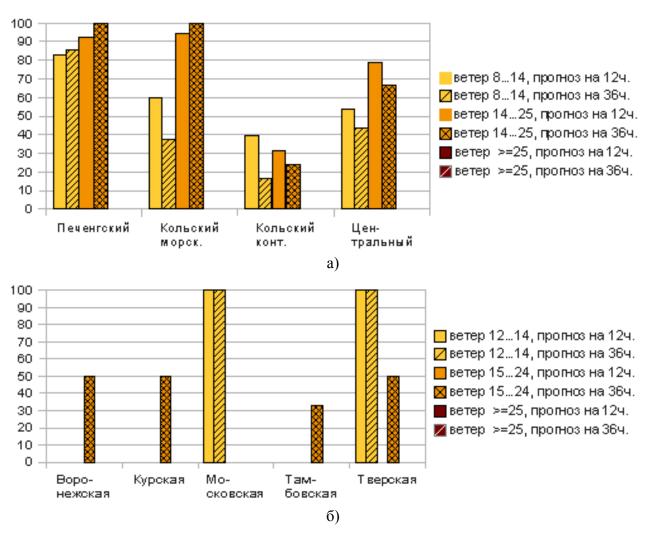


Рис. 2. Оправдываемость (%) прогнозов ветра в районах Мурманской области [5] (а) и областях ЦФО [2] (б).

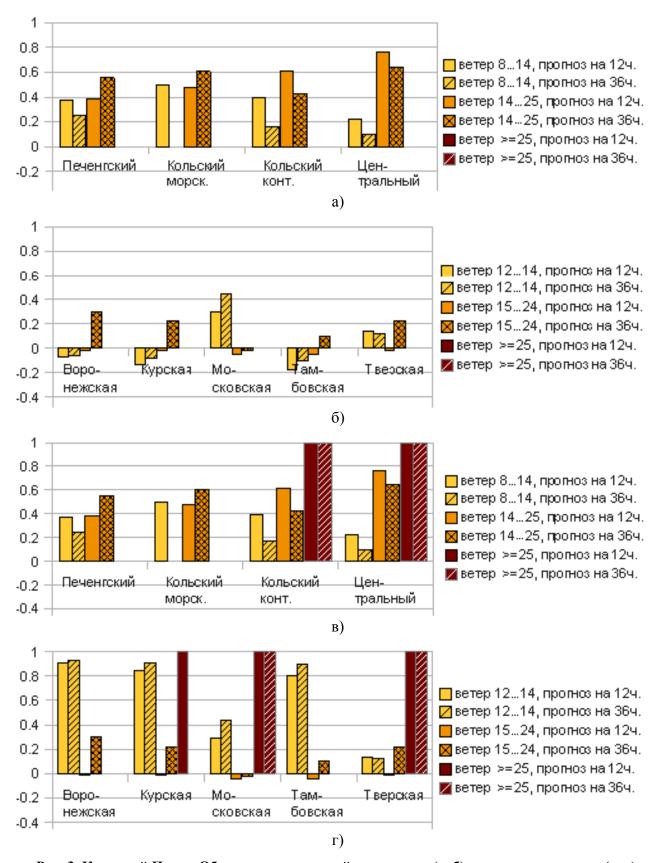


Рис. 3. Критерий Пирса-Обухова, посчитанный по первому (а, б) и второму варианту (в, г), прогнозов ветра в районах Мурманской области [5] (а, в) и областях ЦФО [2] (б, г).

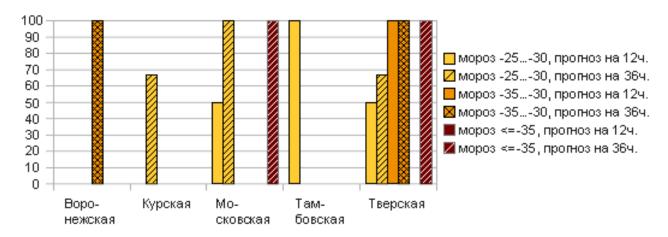


Рис. 4. Оправдываемость (%) прогнозов категорий сильных морозов в областях ЦФО [2].

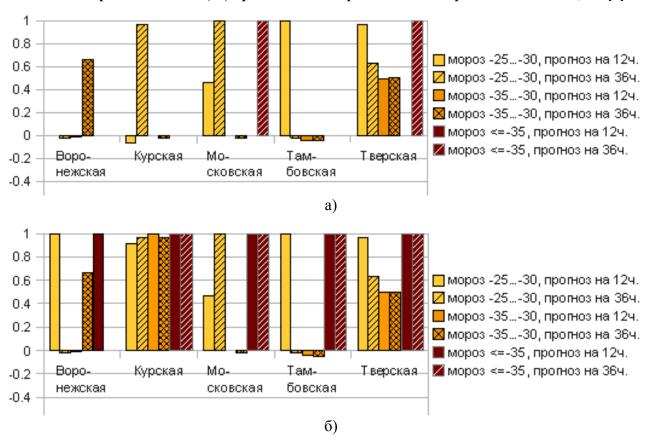


Рис. 5. Критерий Пирса-Обухова, посчитанный по первому (а) и второму варианту (б), прогнозов сильных морозов в областях ЦФО [2].

Выводы

В процессе данной работы была собрана, проанализирована и представлена информация по существующим системам прогноза категорий опасных метеорологических явлений. В работе приводятся результаты сравнения статистического анализа качества прогнозов категорий опасности метеорологических явлений методами [2] и [5]. Показано, что

качество прогноза категорий опасности сильного ветра для метода [5] выше. Данное сравнение следует рассматривать как качественное, так как оно проводится для различных регионов.

В настоящее время ведутся работы по усовершенствованию метода [5], а именно: изменение критериев категорий опасности в соответствии с климатическими условиями регионов, для которых он используется; изменение алгоритма с целью улучшение качества прогнозов. Также продолжается сбор информации о существующих технологиях прогнозов категорий опасности метеорологических явлений.

Работа выполнена с частичной поддержкой гранта РФФИ 10-08-00493-а и FP7-IRSES-"Climseas".

Список использованных источников

- 1. Алексеева А.А. Методы прогноза максимального количества осадков в зонах активной конвекции и альтернативного прогноза сильных ливней и шквалов // Информационный сборник № 34.-2007-C.49-69.
- 2. Вильфанд Р.М., Васильев П. П., Лукьянов В.И., Голубев А.Д. Методические указания по прогнозу опасного природного явления аномально холодной (аномально жаркой) погоды на территории России M., 2010 13 с.
- 3.. Переходиева Э.В. Модель гидродинамико-статистического прогноза с заблаговременностью 12-14 ч сильных шквалов и смерчей по территории Сибири // Современные проблемы дистанционного зондирования Земли из космоса. -2011. −Т. 8. № 1 С. 263-270.
- 4. Р.Д 52.27.284-91. Методические указания. Проведение производственных (оперативных) испытаний новых и усовершенствованных методов гидрометеорологических и гелиографических прогнозов. Л.: Гидрометеоиздат, 1991.
- 5. Рубинитейн К.Г., Игнатов Р.Ю., Бычкова В.И., Ширяев М.В., Чекулаева Т.С. Система прогноза опасных метеорологических явлений для Мурманской области на базе региональной гидродинамической модели // Погода и климат: новые методы и технологии исследований (к 50-летию государственной кафедры метеорологии и охраны атмосферы в Пермском государственном университете). Пермь, 2010. С. 30–34.
- 6. http://www.smhi.se/vadret/vadret-i-sverige/Varningar/varning_definition.html. категории опасности метеорологических явлений, принятые HMC Швеции.