ОПАСНОЕ ВЕТРОВОЕ ВОЛНЕНИЕ В СЕВЕРНОЙ АТЛАНТИКЕ ЗИМОЙ 2008-2009 ГГ.

Диагноз и прогноз ветрового волнения представляет большой интерес для мореплавания, рыболовства, гидротехнического строительства, добычи нефти и газа на шельфе и других видов морской деятельности [1, 2]. Наиболее важен прогноз опасных ветровых волн. Согласно типового перечня опасных природных явлений, к опасным относятся волны, высота которых в прибрежных районах составляет не менее 4 м, в открытом море - не менее 6 м, в открытом океане - не менее 8 м. В данной статье анализируются условия формирования волнения высотой более 8 м в Северной Атлантике в период с декабря 2008 по март 2009 г.

Для анализа использовались карты высот волн на акватории Северной Атлантики в сроки 00 и 06 ч, составляемые в Отделе морских гидрологических прогнозов Гидрометцентра России. Для более полного освещения акватории Северной Атлантики в программе ГИС Метео был сформирован слайд за срок 12 ч с синоптической и гидросиноптической наноской. Также были проанализированы фактические данные максимальных высот волн с заякоренных буёв в Северной Атлантике за сроки 00 и 12 ч.

Для анализа условий формирования опасного ветрового волнения по данным синоптических и гидросиноптических карт были определены следующие характеристики штормовых циклонов и связанного с ними волнения:

- траектории перемещения циклонов с положением их центров в срок 00 часов каждых суток;
 - минимальное давление в центре циклона;
 - максимальная скорость ветра;
 - максимальная высота волны;
 - сектора циклонов, в которых отмечалось опасное волнение.

Изучение данных параметров важно как для оперативных, так и для научных целей [3].

За рассматриваемый период самые сильные штормы наблюдались в январе. Краткая информация о синоптических и гидросиноптических условиях для некоторых циклонов на 00 ч каждых суток января 2009 г. приведена в табл. 1.

 Таблица 1

 Характеристики штормовых циклонов в Северной Атлантике в январе 2009 г.

		Давление	Максимальная	Максимальная	
	Дата	в центре	скорость	высота	
		циклона, гПа	ветра, м/с	волн, м	
Циклон 1	1.01	984	30	8	
циклон 1	2.01	994	15	4	
Циклон 2	1.01	985	23	7	
	2.01	973	27	9	
	3.01	987	20	7	
	4.01	991	23	7	
	5.01	980	20	6	
	6.01	980	20	6	
Циклон 3	7.01	979	17	5	
циклоп 3	8.01	978	15	4	
	9.01	974	15	4	
	10.01	959	31	9	
	11.01	968	25	8	
	11.01	700	25	O	
	10.01	984	25	7	
	11.01	966	30	11	
Циклон 4	12.01	968	21	8	
	13.01	982	17	6	
	14.01	994	15	5	
	14.01	998	15	4	
	15.01	971	27	7	
	16.01	967	43	10	
Циклон 5	17.01	961	31	12	
		961	34	13	
	18.01				
	19.01	966	26	9	
	20.01	964	30	11	
Циклон 6	14.01	984	27	8	
	15.01	970	29	9	
Циклон 7	21.01	969	20	5	
	22.01	953	25	5 7	
	23.01	947	25	8	
	25.01)41	23	O	
Циклон 8	23.01	973	24	7	
Tandion o	24.01	967	31	9	
		, , ,			
Циклон 9	24.01	978	20	6	
	25.01	961	34	9	
	26.01	983	30	12	
Циклон 10	27.01	967	29	8	
,	28.01	970	29	9	
1	1		1	· .	

Из табл. 1 видно, что наиболее опасные ветро-волновые условия наблюдались в циклоне 5 (14-20.01.2009 г.). Максимальные скорости ветра до 43 м/с наблюдались 16.01 после углубления циклона до 967 гПа, при этом сформировались волны высотой 10 м. В течение последующих двух суток циклон продолжал углубляться до 961 гПа, и, несмотря на снижение максимальных скоростей ветра до 34 м/с, сформировались опасные ветровые волны высотой до 13 м. Для этого циклона характерно очень быстрое заглубление: падение давления за сутки с 14 по 15.01 составило 27 гПа, т.е. циклон развивался по типу «взрывного» циклона.

По данным выборки волн с высотой 8 м и более для каждого месяца отдельно в период с декабря 2008 по март 2009 г. рассчитана повторяемость возникновения опасных волн в различных секторах циклонов, которая представлена табл. 2.

 Таблица 2

 Повторяемость опасного волнения в различных секторах циклонов

 в декабре 2008 – марте 2009 г.

Сектор циклона	Декабрь 2008 г.		Январь 2009 г.		Февраль 2009 г.		Март 2009 г.	
	Число случаев	Повто- ряемость (%)	Число случаев	Повто- ряемость (%)	Число случаев	Повто- ряемость (%)	Число случаев	Повто- ряемость (%)
Тыловая часть	12	52	14	58	11	69	10	77
Периферия	7	30	3	13	1	6	1	8
Тёплый сектор	4	18	7	29	4	25	2	15

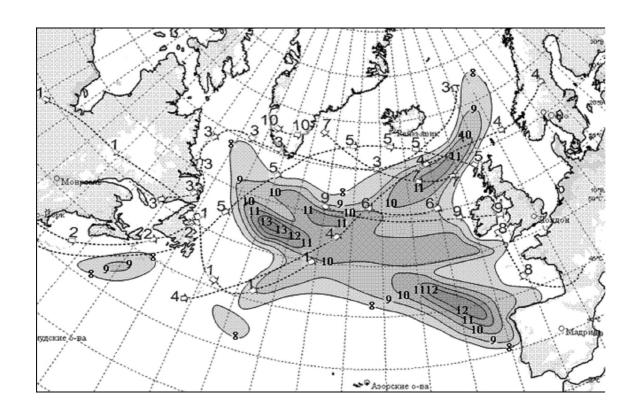
Из табл. 2 видно, что опасное волнение с высотой волн более 8 м за период с декабря 2008 по март 2009 г. развивалось в 52-77 % случаев в тыловых частях циклонов, в 6-30 % случаев - на периферии циклонов перед тёплым фронтом, в 15-29 % - в тёплых секторах глубоких циклонов. На основании этого можно заключить, что возникновение опасного волнения наиболее вероятно в тыловой части циклона за холодным фронтом.

Для каждого месяца в период с декабря 2008 по март 2009 г. по данным судовых и буйковых наблюдений в Северной Атлантике были построены карты опасного ветрового волнения. На рисунке представлена карта опасного ветрового волнения для января.

На рисунке можно проследить траекторию уже упоминавшегося циклона 5, центр которого в период с 16 по 18.01 сместился от юга Гренландии до южного побережья Исландии; при этом в тыловой части циклона 16.01 наблюдался ураганный ветер до 43 м/с, высота штормовых волн 18.01 достигла 13 м.

Также можно отметить штормовое волнение, вызванное обширным циклоном 9 в период с 25 по 26.01, центр которого находился в районе Шотландии. Давление в центре циклона составило 961 гПа, максимальная скорость ветра была 34 м/с, а высоты штормовых волн достигали 12 метров. Волнение, вызванное этим циклоном, охватило почти всю акваторию Бискайского залива.

В результате анализа штормовых циклонов, наблюдавшихся над акваторией Северной Атлантики за период с декабря 2008 по март 2009 г., можно сделать следующие выводы:


- по количеству наблюдавшихся штормовых циклонов выделяются декабрь и январь, в каждом из которых отмечено по 10 случаев циклонов, сформировавших опасное волнение. В феврале и марте циклоническая активность стала заметно ослабевать. В феврале было отмечено 6 циклонов, которые вызвали опасное волнение, а в марте только 3 циклона;
- наиболее низкое давление 947 гПа было отмечено 23.01 в циклоне, центр которого располагался к северо-западу от Великобритании, скорость ветра в нём достигала 25 м/с. В декабре и феврале минимальное давление в штормовых циклонах составляло 962 гПа, а в марте 973 гПа. То есть минимальные значения давления в центрах циклонов напрямую зависят от циклонической активности данного периода. В месяцы с наибольшей циклонической активностью отмечены наименьшие значения давления, а в месяцы, когда активность циклонов ослабевала, минимальные значения давления возросли;
- максимальные значения скоростей ветра также наблюдались в январе: 16.01 был отмечен ураганный ветер 43 м/с; в декабре значение максимальной скорости ветра составило 39 м/с, в феврале 42 м/с, в марте 31 м/с.
- максимальные высоты штормовых волн до 13 м наблюдались в январе, а в декабре, феврале и не превышали 11 м.

Следует отметить, что за рассматриваемый период наблюдались 2 штормовых циклона (в декабре и январе), траектории которых отличались от остальных (в том числе циклон 8 (23-24.01), см. рисунок). Траектории этих циклонов были нестандартными, так как они смещались с северо-запада на юго-восток в районе Великобритании. Оба циклона развились при регенерации старых заполняющихся циклонов в их южных частях. Смещение циклонов с северо-запада на юго-восток было связано с тем, что в это время над Европой находилась резко выраженная высотная ложбина, над Великобританией на всех уровнях изобарических поверхностей преобладал северо-западный перенос.

Особенностью этих циклонов явилась также стремительность их эволюции; все стадии развития циклоны прошли в среднем в течение двух суток. Оба циклона вызвали шторма с

максимальной скоростью ветра в них выше 30 м/с и волнением высотой более 8 м, которое в обоих случаях развилось в тылу этих циклонов.

Таким образом, выполненный анализ позволил уточнить синоптические условия, при которых формируется опасное ветровое волнение в Северной Атлантике.

Высота опасного ветрового волнения (м) в Северной Атлантике в январе 2009 г. Пунктиром показаны траектории циклонов; цифры на траекториях – номера циклонов; стрелки – положения центров циклонов в 00 ч каждых суток.

СПИСОК ЛИТЕРАТУРЫ

- 1. Абузяров 3. К. Морское волнение и его прогнозирование. Л.: Гидрометеоиздат, 1981. 166 с.
- 2. Руководство по морским гидрологическим прогнозам /Под ред. 3. К. Абузярова. СПб.: Гидрометеоиздат, 1994. С. 526.
- 3. Gulev S.K, Grigorieva V. Variability of the winter wind waves and swell in the North Atlantic and North Pacific as revealed by the voluntary observing ship data // Journal of Climate.-2006.-Vol.19.- P. 5667-5685.