СРЕДНЕГОДОВЫЕ ХАРАКТЕРИСТИКИ ТЕРМИЧЕСКОЙ УСТОЙЧИВОСТИ В ПОГРАНИЧНОМ СЛОЕ АТМОСФЕРЫ ГОРОДА ПО ДАННЫМ МИКРОВОЛНОВЫХ ИЗМЕРЕНИЙ

Введение

Наиболее полные данные о вертикальном распределении метеорологических величин в пограничном слое атмосферы (ПСА) получены по наблюдениям на высотных метеорологических мачтах. В работе [1] проанализированы многолетние данные этих наблюдений в г. Обнинске, там же приведены некоторые обобщения наблюдений на телебашне «Останкино» в Москве.

Более ранние оценки градиентных наблюдений в ПСА сделаны по данным радиозондирования, основным недостатком этого метода является ограниченное количество измерений в ПСА [7].

Результаты многочисленных зарубежных исследований климатов ПСА приведены в монографии [8].

Начатые с 2000 г. в московском регионе измерения профилей температуры в нижних слоях при помощи разработанного в Центральной аэрологической обсерватории метеорологического температурного профилемера МТП-5 позволили получить длительные ряды наблюдений [3]. Физической основой метода микроволновых измерений температуры в нижнем 600-метровом слое при помощи приборов МТП-5 является дистанционное измерение теплового излучения атмосферы в центре полосы поглощения молекулярного кислорода ($v = 60 \Gamma \Gamma u$), интенсивность которого зависит от распределения термодинамической температуры в измеряемом слое [11].

Мониторинг термического состояния ПСА по данным дистанционного измерения профилей температуры в нижних слоях приборами МТП-5 позволяет изучать особенности ПСА в различном временном масштабе, в том числе получать сезонные и внутрисуточные характеристики. Первые результаты отечественных уникальных наблюдений описаны в работах [2, 4, 6, 12]. В данной работе обсуждены некоторые результаты анализа изменчивости среднегодовых температурных характеристик ПСА в московском мегаполисе, в городах Нижний Новгород и Красноярск.

Исходные данные

По данным микроволновых измерений профилей температуры в 2004—2005 гг. в Москвае и ее пригороде Долгопрудном, а также в Нижнем Новгороде и Красноярске рассчитаны среднечасовая температура $T_h(t_i)$ и ее вертикальные градиенты $G_H(t_i)$ в слоях 0—100, 0—200, 0—300, 0—400, 0—500 и 0—600 м по следующей формуле:

$$G_H(t_i) = [T_0(t_i) - T_h(t_i)]/(0.01h),$$
 (1)

где $G_H(t_i)$ — вертикальный градиент, °C/100 м; i=0,1,2,...,23 — номер часа; $t_i=0$ ч 30 мин; 1 ч 30 мин; 2 ч 30 мин, ..., 23 ч 30 мин — срок измерения; $T_h(t_i)$ — средняя температура в i-й час на высоте h,h=100,200,300,400,500 и 600 м.

За весь период наблюдений, т. е. за два года рассчитаны средние значения вертикальных градиентов $<G_H(t_i)>_{\mathrm{M}}, <G_H(t_i)>_{\mathrm{L}}, <G_H(t_i)>_{\mathrm{H}}$ и $<G_H(t_i)>_{\mathrm{K}}$ для Москвы, Долгопрудного, Нижнего Новгорода и Красноярска соответственно.

Для описания особенностей термической устойчивости ПСА в московском мегаполисе рассчитаны разности вертикальных градиентов между центром Москвы и пригородом (Долгопрудным):

$$\Delta < G_H(t_i) > = < G_H(t_i) >_{\mathbf{M}} - < G_H(t_i) >_{\mathbf{\Pi}}.$$
 (2)

Обсуждение результатов

Предварительный анализ среднемесячных термических характеристик показал, что аномалии атмосферной циркуляции в отдельные месяцы могут вносить заметные коррективы в типовой суточный ход стратификации температуры в ПСА. С учетом недостаточной продолжительность имеющихся во всех городах рядов наблюдений (2 года) поставлена задача: получить представления об отличительных чертах термического состояния нижних слоев атмосферы в целом за 2 года в трех крупных городах России. В табл. 1 приведены средние за весь период наблюдений внутрисуточные изменения вертикальных градиентов температуры по данным дистанционных наблюдений в Москве, Красноярске и Нижнем Новгороде. В табл. 1 также приведены минимальные и максимальные градиенты и рассчитанные для каждого слоя среднеквадратические отклонения (СКО) за сутки.

Среднегодовые вертикальные

ереднегодовие вертиманили										
Время	Москва							Kpac		
суток,	Слой									
Ч	100	200	300	400	500	600	100	200		
0	0,89	0,83	0,76	0,69	0,64	0,62	0,21	0,15		
1	0,85	0,77	0,70	0,63	0,59	0,57	0,11	0,06		
	0,85	0,73	0,65	0,58	0,55	0,53	0,05	-0,01		
2 3	0,83	0,70	0,61	0,54	0,51	0,49	-0.02	-0.09		
	0,80	0,64	0,56	0,49	0,46	0,45	-0,06	-0.13		
4 5	0,80	0,62	0,53	0,47	0,43	0,43	-0,09	-0.17		
6	0,85	0,64	0,53	0,46	0,43	0,42	-0,06	-0.17		
7	0,99	0,73	0,60	0,51	0,46	0,45	0,09	-0,08		
8	1,20	0,90	0,73	0,62	0,56	0,53	0,36	0,12		
9	1,42	1,09	0,92	0,78	0,69	0,65	0,71	0,37		
10	1,57	1,27	1,07	0,91	0,81	0,75	1,01	0,61		
11	1,67	1,38	1,18	1,02	0,91	0,85	1,30	0,87		
12	1,74	1,46	1,27	1,10	0,98	0,92	1,51	1,07		
13	1,76	1,50	1,32	1,14	1,03	0,97	1,62	1,20		
14	1,77	1,52	1,34	1,17	1,05	0,99	1,62	1,23		
15	1,75	1,51	1,34	1,17	1,06	1,00	1,55	1,20		
16	1,71	1,49	1,33	1,16	1,05	0,99	1,42	1,14		
17	1,63	1,44	1,29	1,14	1,03	0,97	1,26	1,04		
18	1,55	1,37	1,23	1,09	0,99	0,94	1,11	0,94		
19	1,40	1,27	1,16	1,03	0,94	0,89	0,95	0,83		
20	1,23	1,15	1,06	0,95	0,88	0,84	0,79	0,70		
21	1,07	1,04	0,97	0,88	0,81	0,78	0,60	0,55		
22	0,99	0,96	0,89	0,80	0,75	0,72	0,44	0,40		
23	0,95	0,89	0,83	0,75	0,70	0,67	0,31	0,27		
Минимум	0,80	0,62	0,53	0,46	0,43	0,42	-0,09	0,17		
Максимум	1,77	1,52	1,34	1,17	1,06	1,00	1,62	1,23		
CKO	0,38	0,33	0,30	0,26	0,23	0,21	0,61	0,50		

П р и м е ч а н и е . Выделены жирным шрифтом градиенты, превышающие 0,6 °C/100 м,

В Москве измерения профилей температуры атмосферы прибором МТП-5 проводились в центре города — в районе Красной Пресни. В течение суток средние вертикальные градиенты температуры нижнего 600-метрового слоя изменяются от 0,42 до 1,77°C/100 м (см. табл. 1), т. е. средний вертикальный градиент во всех слоях в центре Москвы не опускался ниже 0,42°C/100 м. Замечено, что отношение максимального за сутки вертикального градиента к минимальному в любом из рассматриваемых слоев почти постоянно (меняется от 2,2 до 2,5).

Как и следовало ожидать [7, 8], наибольшая изменчивость температуры и соответственно вертикального градиента отмечена в нижнем 100-метровом слое. В течение 15 ч (с 8 до 22 ч) средний градиент темпе-

Таблица 1

		0.0	~	/1 00
rna hueutki	температур	ILI (. /	IIIII M

ноярск				Нижний Новгород					
M									
300	400	500	600	100	200	300	400	500	600
0,16	0,16	0,19	0,24	0,06	0,13	0,20	0,23	0,27	0,32
0,07	0,09	0,13	0,18	0,01	0,07	0,14	0,18	0,23	0,28
0,01	0,03	0,07	0,13	-0.06	0,01	0,09	0,14	0,20	0,25
-0,06	-0.03	0,02	0,08	-0,12	-0,04	0,04	0,10	0,16	0,22
-0,11	-0.07	-0.02	0,04	-0,14	-0,06	0,02	0,08	0,14	0,21
-0,15	-0,11	-0.05	0,01	-0,14	-0.08	0,00	0,07	0,13	0,19
-0.16	-0,12	-0.07	0,00	-0.15	-0,11	-0,03	0,03	0,09	0,16
-0,10	-0,08	-0.04	0,02	-0.05	-0.05	0,00	0,05	0,11	0,17
0,05	0,03	0,05	0,10	0,14	0,06	0,08	0,11	0,15	0,20
0,25	0,19	0,18	0,21	0,38	0,26	0,23	0,23	0,25	0,29
0,45	0,36	0,33	0,33	0,58	0,44	0,39	0,36	0,36	0,39
0,68	0,55	0,49	0,49	0,73	0,58	0,52	0,47	0,46	0,48
0,86	0,71	0,63	0,61	0,84	0,69	0,62	0,57	0,55	0,55
0,99	0,82	0,74	0,70	0,89	0,76	0,69	0,63	0,61	0,61
1,03	0,87	0,78	0,75	0,90	0,79	0,72	0,67	0,64	0,64
1,03	0,87	0,79	0,76	0,87	0,77	0,72	0,67	0,65	0,65
0,99	0,85	0,78	0,75	0,80	0,73	0,69	0,65	0,63	0,64
0,92	0,79	0,73	0,71	0,72	0,67	0,64	0,61	0,60	0,61
0,84	0,73	0,68	0,67	0,63	0,59	0,59	0,56	0,56	0,58
0,76	0,67	0,63	0,62	0,55	0,53	0,53	0,52	0,52	0,54
0,65	0,58	0,55	0,55	0,48	0,47	0,48	0,47	0,48	0,50
0,52	0,47	0,46	0,48	0,34	0,37	0,40	0,41	0,43	0,46
0,40	0,37	0,37	0,40	0,25	0,28	0,32	0,35	0,38	0,41
0,27	0,26	0,28	0,31	0,15	0,20	0,26	0,29	0,33	0,38
-0,16	0,1	0,00	0,00	-0.15	-0,11	-0.03	0,03	0.09	0,16
1,03	0,87	0,79	0,76	0,90	0,79	0,72	0,67	0,65	0,65
0,43	0,36	0,31	0,27	0,38	0,32	0,27	0,22	0,19	0,17

курсивом - меньше 0 °C/100 м.

ратуры в этом слое больше сухоадиабатического. Термически неустойчивым нижний 300-метровый слой остается почти 12 ч (с 10 до 21 ч), а весь 600-метровый слой — с 14 до 16 ч (пик неустойчивости). Отсюда устойчивым, точнее слабоустойчивым [1], ПСА в городе остается лишь треть суток; большую часть преобладают благоприятные условия для интенсивного перемешивания и турбулентного обмена и, следовательно, рассеивания вредных примесей в приземном слое атмосферы.

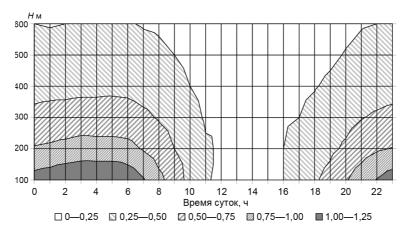
Смена знака изменений вертикальных градиентов (переход от ночного уменьшения к дневному росту градиентов) в нижнем 300-метровом слое в центре Москвы происходит в среднем около 6—7 ч утра. В слое 400—600 м эти перемены запаздывают примерно на 1 ч.

После периода активной конвекции, обусловленной в первую очередь, прогревом подстилающей поверхности, процессы перемешивания в вечернее и ночное время в центре московского мегаполиса лишь ослабевают. Аккумулированная городскими строениями и дорожными покрытиями теплота продолжает поддерживать генерацию турбулентности, на что указывают вертикальные градиенты вечером и в ночное время, а также отсутствие отрицательных градиентов (т. е. инверсионного профиля) температуры.

Отметим, что городской остров теплоты (ГОТ) начинает формироваться (с 21-22 ч) в термически квазиоднородном состоянии — почти с одинаковыми вертикальными градиентами в нижних слоях разной толщины. Медленное остывание ГОТ сопровождается термическим «расслоением» городского ПСА, а по мере ночного истощения/уменьшения запасов городской теплоты перемешанным остается относительно тонкий 100-200-метровый слой атмосферы. Таким образом, получены новые представления о внутрисуточной динамике термического поля в нижних слоях городской атмосферы.

Суммарный вклад большого города в термический режим ПСА оценен по разности вертикальных градиентов температуры между центром Москвы и пригородом. Внутрисуточные изменения разности для различных слоев атмосферы приведены в табл. 2, а изоплеты разностей показаны на рисунке. Как следует из табл. 2 и рисунка, во всем 600-метровом слое изменения $\Delta < G_H(t_i) >$ находятся в области положительных значений, т. е. городской ПСА термически более неустойчив, чем невозмущенная атмосфера окрестностей. Различия вертикальных градиентов температуры «город—пригород» максимальны в нижнем 100-метровом слое. Вечером и ночью часы разность может достигать 1,24°C/100 м. После полудня (12—16 ч) интенсивное перемешивание (одинаковое по природе и в городе, и за городом) приводит к размыванию различий системы «город-пригород» и к сближению вертикальных градиентов температуры. В это время в климатическом выражении различия между температурой приземного воздуха в центре и на окраине большого города незначительны (редко превышают 2°С) [5, 9, 10]; значение $\Delta < G_H(t_i) >$ становится минимальным во всем 600-метровом слое и не превышает 0,25°C/100 м.

Резкое уменьшение различий в распределении температуры в ПСА свидетельствует о том, что процессы турбулентного перемешивания днем оказывают значительное влияние на формирование термической структуры ПСА на фоне специфического теплового воздействия большого города. Наличие последнего перманентно действующего фактора в московском мегаполисе косвенно подтверждают результаты, полученные по наблюдениям в Красноярске.


Таблица 2 Разность среднегодовых вертикальных градиентов температуры между центром Москвы и Долгопрудным, °C/100 м

Время	Слой, м									
суток, ч	100	200	300	400	500	600				
0	1,10	0,77	0,56	0,42	0,32	0,25				
1	1,14	0,79	0,58	0,43	0,32	0,24				
2	1,20	0,82	0,59	0,43	0,33	0,25				
2 3	1,23	0,85	0,61	0,44	0,34	0,26				
4	1,24	0,84	0,61	0,44	0,33	0,26				
4 5 6 7	1,24	0,84	0,61	0,45	0,33	0,26				
6	1,17	0,82	0,60	0,44	0,33	0,26				
	1,02	0,73	0,55	0,40	0,30	0,24				
8	0,82	0,62	0,48	0,36	0,28	0,23				
9	0,63	0,50	0,41	0,32	0,25	0,20				
10	0,42	0,38	0,32	0,25	0,20	0,16				
11	0,27	0,27	0,23	0,19	0,16	0,13				
12	0,21	0,23	0,22	0,18	0,14	0,13				
13	0,16	0,21	0,20	0,16	0,14	0,12				
14	0,15	0,20	0,19	0,16	0,13	0,11				
15	0,17	0,20	0,19	0,16	0,13	0,12				
16	0,25	0,25	0,23	0,18	0,14	0,12				
17	0,32	0,30	0,25	0,21	0,16	0,13				
18	0,47	0,37	0,30	0,24	0,19	0,15				
19	0,58	0,45	0,36	0,28	0,22	0,17				
20	0,73	0,54	0,42	0,32	0,26	0,21				
21	0,88	0,64	0,49	0,38	0,29	0,24				
22	1,01	0,72	0,53	0,40	0,31	0,25				
23	1,12	0,76	0,56	0,42	0,32	0,25				

Примечание. Выделены жирным шрифтом минимальные разности градиентов в слое.

В Красноярске профилемер МТП-5 установлен в центре города на расстоянии примерно 800 м от берега Енисея. Если в центре Москвы внутрисуточные изменения вертикального градиента температуры нижнего 100-метрового слоя не более 1 °C (табл. 1), то в Красноярске эти изменения достигают 1,71 °C. Внутрисуточная изменчивость температурного градиента (СКО) во всех слоях в Красноярске также больше, чем в Москве. С высотой СКО уменьшается с 1,6 до 1,3. Это свидетельствует о большей стабильности температурного режима в московском мегаполисе и высокой внутрисуточной изменчивости в Красноярске.

Со второй половины ночи (2—3 ч) и до утра (7—8 ч) в нижнем 500-метровом слое в среднем за год наблюдается сильная устойчивость

Изоплеты разности средних вертикальных градиентов температуры, °С/100 м.

атмосферы (отмечены отрицательные градиенты температуры воздуха, до -0.17 °C/100 м). Причем 200-300-метровый слой более устойчив, чем приземный, что указывает на существование источника теплоты, оказывающего «сопротивление» радиационному выхолаживанию. Таким источником может быть не только ГОТ, но и водная поверхность протекающего через весь город Енисея.

В отличие от Москвы, в Красноярске сухоадиабатические и превышающие их градиенты температуры формируются лишь в нижнем 300-метровом слое:

- в слое 0—300 м в период с 13 до 16 ч,
- в слое 0—100 м— с 9 до 18 ч (за 9 ч, что на 6 ч меньше, чем в Москве). Поскольку в Красноярске (примерно на одной широте с Москвой)

Поскольку в Красноярске (примерно на одной широте с Москвой) термическая неустойчивость охватывает слой как минимум на 300 м меньше, чем в Москве, можно утверждать, что в московском мегаполисе на формирование городского ПСА влияют не только размеры города, но и плотность, и высотность застройки, существенно бульшие площади дорожных покрытий, а также значительно меньшая поверхность водных объектов.

Влияние водных объектов на термический режим ПСА неоспоримо, но у нас нет количественных оценок таких эффектов в масштабе большого города. Тем не менее некоторые выводы можно сделать при сравнении однородных рядов в трех рассматриваемых городах.

В Нижнем Новгороде профилемер МТП-5 расположен на расстоянии примерно 900 м от правого берега Оки, в одной из самых высоких

точек нагорной части города. На севере на расстоянии примерно 5 км Ока впадает в Волгу, которая огибает город с востока на расстоянии примерно 9 км от места установки МТП-5.

Как показали расчеты, максимальный средний вертикальный градиент температуры в Нижнем Новгороде равен 0,9 °C/100 м, т. е., не более 0,98 °C/100 м (значение сухоадиабатического градиента). В этом состоит самое существенное отличие распределения температуры от такового в Москве и Красноярске.

Внутрисуточные изменения вертикального градиента температуры нижнего 100-метрового слоя составляют 1,05 °C (табл. 1), что немного больше, чем в Москве (0,97), и значительно меньше, чем в Красноярске (1,71). Внутрисуточная изменчивость (СКО) температурного градиента во всех слоях выше 100 м в Нижнем Новгороде меньше, чем в двух других городах.

На специфический температурный режим ПСА в Нижнем Новгороде указывают возрастающие с увеличением толщины слоя градиенты в период с 21 ч вечера примерно до 7 ч утра (в Москве наблюдается противоположная картина). Так, например, в 23 ч в Нижнем Новгороде $G_{100}(23) \ge 0.15$ °C/100 м, а $G_{600}(23) \ge 0.38$ °C/100 м.

Предположим, что испаряющаяся с водного зеркала двух больших рек влага является источником скрытой теплоты в нижних слоях. Возможно, это и является основной причиной специфических особенностей ПСА в Нижнем Новгороде, во всяком случае, в районе функционирования прибора МТП-5. Конечно, деформации структуры ПСА способствуют и местные ветры, формирующиеся за счет большого перепада высот в береговой зоне. Но чтобы сделать уверенные выводы, не достает данных о профилях ветра и влажности.

Помимо отмеченных особенностей в Нижнем Новгороде нижние слои ПСА становятся термически устойчивыми раньше, чем в Красноярске и сохраняются в таком состоянии дольше. Так, градиент менее $0.6~^{\circ}$ С/ $100~^{\circ}$ м отмечается в Нижнем Новгороде с $18~^{\circ}$ д о $10~^{\circ}$ утра, а в Красноярске — с $22~^{\circ}$ д о $8~^{\circ}$ (продолжительность $16~^{\circ}$ и $10~^{\circ}$ соответственно). Устойчивость условий с отрицательными градиентами температуры (инверсионный профиль) в Нижнем Новгороде сохраняется на $2~^{\circ}$ дольше, чем в Красноярске.

Не исключено, что выявленные столь явные различия характеристик ПСА в двух расположенных на берегах крупных рек городах обусловлены и различиями в высоте измерений.

Частично ответы на возникающие вопросы дают результаты анализа сезонных характеристик вертикальных профилей температуры, но это находится за рамками настоящей статьи.

Выводы

По данным уникальных микроволновых измерений профилей температуры в нижнем 600-метровом слое атмосферы впервые получены среднегодовые характеристики термической устойчивости ПСА в трех крупных городах России.

Выявлены характерные черты среднегодовых вертикальных градиентов температуры в слоях толщиной от 100 до 600 м и отличительные особенности термической структуры ПСА в центре Москвы, Нижнего Новгорода и Красноярска:

- наиболее сильная деформация термической структуры ПСА наблюдается в Москве; она обусловлена многофакторным воздействием мегаполиса на термический режим нижних слоев атмосферы;
- на ПСА в Красноярске помимо собственно городского воздействия заметное влияние оказывает Енисей;
- ПСА в Нижнем Новгороде не имеет выраженных черт воздействия «большого города». Обнаруженные специфические особенности, вероятно, обусловлены влиянием большой площади речной поверхности и местными циркуляциями над резко неоднородной подстилающей поверхностью.

Донные исследования выполнены при частичной поддержке грантов РФФИ 05-0 5-65288-а, 06-0 5-644427, 06-0 5-64104.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бызова Н. Л. Типовые характеристики нижнего 300-метрового слоя атмосферы по измерениям на высотной мачте. М.: Гидрометеоиздат, 1982. 69 с. 2. Вязанкин А. С., Вязанкин С. А., Жадин Е. А., Кадыгров Е. Н. Анализ
- 2. Вязанкин А. С., Вязанкин С. А., Жадин Е. А., Кадыгров Е. Н. Анализ вертикального распределения температуры в пограничном слое атмосферы в пригороде и мегаполисе // Метеорология и гидрология. -2003. -№ 7. С. 5-12.
- 3. Кадыгров Н. Е., Крученицкий Г. М., Лыков А. Д. Количественные оценки возмущений, вносимых мегаполисом в поле температуры атмосферного пограничного слоя // Изв. РАН. ФАО. -2007. Т. 43, № 1. С. 1-13.
- 4. Кадыгров Е. Н., Кузнецова И. Н., Голицин Г. С. Остров тепла в пограничном слое атмосферы над большим городом: новые результаты на основе дистанционных данных // Докл. РАН. 2002. Т. 385, N 4. С. 541—548.
 - 5. Климат, погода, экология Москвы. СПб.: Гидрометеоиздат, 1995. 440 с.
- 6. Кузнецова И. Н., Хайкин М. Н., Кадыгров Е. Н. Влияние городской среды на температуру в пограничном слое атмосферы по данным микроволновых измерений в Москве и окрестностях // Изв. РАН. ФАО. 2004. Т. 4, № 5. С. 678—688.
- 7. Матвеев Л. Т. Основы общей метеорологии. Физика атмосферы. Л. : Гидрометеоиздат, 1965. С. 265—274.

- 8. О к е Т. Р. Климаты пограничного слоя. Л. : Гидрометеоиздат, 1982. 360 с. 9. Р у б и н ш т е й н К. Г., Ги н з б у р г А. С. Оценки изменения температуры воздуха и количества осадков в крупных городах (на примере Москвы и Нью-Йорка) // Метеорология и гидрология. -2003. - № 7. - С. 29-39.
- 10. С п р а в о ч н и к $\,$ эколого-климатических характеристик г. Москвы. Изд-во
- Московского ун-та, 2003. 308 с.

 11. Kadygrov E. N., Pick D. R. The potential for temperature retrieval from an angular- scanning single-channel microwave radiometer and some comparisons with in situ observations // Meteorological Application. — UK, 1998. — P. 393—404
- 12. Khaikine M. N., Kuznetsova I. N., Kadygrov E. N., Miller E. A. Investigation of temporal-spatial parameters of an urban heat island on the basis of passive microwave remote sensing // Theoretical and Applied Climatology. — 2006. — Vol. 84, N 1—3. — P. 161—169.