Численные схемы для оператора адвекции в модели локального прогноза

Построению численных схем, аппроксимирующих операторы нелинейного и квазилинейного переноса, посвящена значительная литература. В зависимости от специфики физической задачи на первый план выходят требования более точного описания тех или иных эффектов, что, в свою очередь, обусловливает методику дискретной аппроксимации дифференциального оператора. Приведенные ниже схемы разрабатывались для использования в моделях численного прогноза погоды, где операторы указанного типа «отвечают» за процессы адвективного переноса. Вклад этих процессов в атмосферную циркуляцию возрастает, если в прогностическую модель вводится учет орографии. Специфика данного контекста определила основные требования к схемам аппроксимации оператора переноса.

1) При учете орографии поля компонентов скорости становятся весьма негладкими не только по вертикальной, но и по горизонтальным координатам. В этих условиях обычные вычислительные предположения о малой изменчивости компонентов скорости на расстоянии шага сетки становятся неоправданными. Возникает задача построения вычислительных алгоритмов для адвективного переноса, учитывающих изменчивость его скорости не только с переходом от одной расчетной точки к другой, но и при расчете в данной точке – изменчивость скорости указанного переноса в окрестности этой точки.

2) Учет орографии выполняется заменой исходной декартовой системы координат – новой, связанной с рельефом. В этой новой системе координат скорость вертикальной адвекции не совпадает с вертикальным компонентом скорости в прежней декартовой системе и может превосходить его на порядок даже в условиях пологого рельефа. В этой связи, численный алгоритм расчета вертикальной адвекции в прогностической схеме должен содержать элементы неявной аппроксимации, чтобы обеспечивать вычислительную устойчивость схемы. Таким образом, предлагаемые схемы должны допускать разные варианты аппроксимации пространственных производных – явные, неявные либо промежуточные.

Рассмотрим уравнение одномерного переноса субстанции $\phi(t, x)$ вдоль оси x со скоростью u(t, x), где t – время:

$$\partial \phi / \partial t + \mathbf{u} \cdot \partial \phi / \partial \mathbf{x} = 0. \tag{1}$$

Уравнение данного вида моделирует нелинейный адвективный перенос гидротермодинамических атмосферных характеристик в прогностической модели.

В качестве исходной вычислительной схемы, подлежащей развитию, примем известную схему «направленных разностей» (для простоты обозначений будем говорить о точке пространственной дискретной сетки с индексом «0» и о переходе от момента времени «0» к моменту времени «1»; пространственный индекс указываем внизу переменной, временной – вверху; см. рис. 1):

$$\begin{split} \frac{\phi_0^1 - \phi_0^0}{\tau} + u_0^0 \cdot \frac{\phi_o^o - \phi_{-1}^0}{x_0 - x_{-1}} &= 0 \text{, если } u_0^0 \geq 0 \text{;} \\ \frac{\phi_0^1 - \phi_0^0}{\tau} + u_0^0 \cdot \frac{\phi_1^o - \phi_0^0}{x_1 - x_0} &= 0 \text{, если } u_0^0 \leq 0 \text{.} \end{split}$$

Или:

$$\phi_0^1 = (1 - (r_0)_1) \cdot \phi_0^o + (r_0)_1 \cdot \phi_{-1}^0, \text{ если } (r_0)_1 \ge 0;$$
(2a)

$$\phi_0^1 = (1 + (r_0)_r) \cdot \phi_0^o - (r_0)_r \cdot \phi_1^0, \quad \text{если} (r_0)_r \le 0.$$
(26)

В выражениях (2а) и (2б) через $(r_0)_1$ и $(r_0)_r$ обозначены «левое» и «правое» числа Куранта в точке x_0 :

$$(\mathbf{r}_{0})_{1} = \tau \cdot \mathbf{u}_{0}^{0} / (\mathbf{x}_{0} - \mathbf{x}_{-1}), \ (\mathbf{r}_{0})_{r} = \tau \cdot \mathbf{u}_{0}^{0} / (\mathbf{x}_{1} - \mathbf{x}_{0}),$$
(3)

где т - временной шаг расчетной сетки.

Условие устойчивости схемы (2а,б):

$$(f_0)_1 \le 1$$
, если $(f_0)_1 \ge 0$;

$$|(\mathbf{r}_{0})_{r}| \leq 1$$
, если $(\mathbf{r}_{0})_{r} \leq 0$.

Строго это условие устанавливается посредством Фурье-анализа, если число Куранта постоянно.

Физический смысл схемы (2а,б): если $u_0^0 \ge 0$, искомое значение ϕ_0^1 принимается равным значению переменной ϕ^0 в точке x, удовлетворяющей $x_{-1} \le x \le x_0$, из которой, двигаясь со скоростью u_0^0 , она за время τ переместится в точку x_0 (см. рис.1). Значение $\phi^0(x)$ определяется линейной интерполяцией по значениям ϕ_{-1}^0 и ϕ_0^0 . Если условие устойчивости $(r_0)_1 \le 1$ выполнено, то такая точка всегда найдется. Аналогично, если $u_0^0 \le 0$, искомое значение ϕ_0^1 принимается равным ϕ^0 в соответствующей точке $x_0 \le x \le x_1$. Снова: если условие устойчивости $|(r_0)_r| \le 1$ выполнено, такая точка всегда найдется.

Таким образом, схема направленных разностей подразумевает, что скорость переноса u^0 равна u_0^0 на всем шаге пространственной сетки $[x_{-1}, x_0]$, если $u_0^0 \ge 0$, или на всем шаге сетки $[x_0, x_1]$, если $u_0^0 \le 0$. Отсюда, естественное обобщение данной схемы заключается в учете переменного распределения величины u^0 в окрестности данной расчетной точки x_0 . Естественно считать, что скорость u^0 на отрезке $[x_{-1}, x_0]$ распределена линейно между значениями u_{-1}^0 и u_0^0 , а на отрезке $[x_0, x_1]$ - линейно между значениями u_0^0 и u_1^0 . (Можно было бы предположить, что u^0 распределено по квадратичной параболе, принимающей в точках x_{-1}, x_0, x_1 значения u_{-1}^0, u_0^0, u_1^0 соответственно, но схемы этого вида до настоящего времени не изучались и в прогностической модели не апробировались.)

Рассмотрим сначала случай $u_0^0 \ge 0$. Положение произвольной точки x на отрезке $[x_{-1}, x_0]$ будем характеризовать безразмерным параметром г согласно соотношению

$$\mathbf{x} = (\mathbf{x}_0 - \mathbf{x}) / (\mathbf{x}_0 - \mathbf{x}_{-1}), \ 0 \le \mathbf{r} \le 1.$$
(4a)

Линейное распределение величины u^0 на $\begin{bmatrix} x_{-1}, x_0 \end{bmatrix}$ имеет вид:

$$\mathbf{u}^{0} = \mathbf{u}^{0}_{0} + (\mathbf{x}_{0} - \mathbf{x}) / (\mathbf{x}_{0} - \mathbf{x}_{-1}) \cdot (\mathbf{u}^{0}_{-1} - \mathbf{u}^{0}_{0}) = \mathbf{u}^{0}_{0} + \mathbf{r} \cdot (\mathbf{u}^{0}_{-1} - \mathbf{u}^{0}_{0}).$$
(5a)

Найдем то значение r, при котором субстанция ϕ , двигаясь из точки x, определяемой соотношением (4a), со скоростью, определяемой выражением (5a), через время τ достигнет точки X₀. Записывая, что путь равен произведению скорости на время, получаем уравнение относительно искомой величины r:

$$\mathbf{r} \cdot (\mathbf{x}_{0} - \mathbf{x}_{-1}) = (\mathbf{u}_{0}^{0} + \mathbf{r} \cdot (\mathbf{u}_{-1}^{0} - \mathbf{u}_{0}^{0})) \cdot \mathbf{\tau}$$

или

$$\mathbf{r} = \frac{1}{1 + (\mathbf{r}_0)_1 - \mathbf{r}_{-1}} \cdot (\mathbf{r}_0)_1, \tag{6a}$$

где $(\mathbf{r}_0)_1$ - «левое» число Куранта в точке \mathbf{x}_0 , см. (3), а \mathbf{r}_{-1} - значение числа Куранта в точке \mathbf{x}_{-1} :

$$\mathbf{r}_{-1} = \tau \cdot \mathbf{u}_{-1}^{0} / (\mathbf{x}_{o} - \mathbf{x}_{-1}).$$
(7a)

Считая, что субстанция ϕ распределена на отрезке $[x_{-1}, x_0]$ линейно, аналогично скорости u^0 ,

$$\phi^{0} = \phi^{0}_{0} + \mathbf{r} \cdot (\phi^{0}_{-1} - \phi^{0}_{0}) = \mathbf{r} \cdot \phi^{0}_{-1} + (1 - \mathbf{r}) \cdot \phi^{0}_{0},$$

получаем разностный аналог уравнения (1), который теперь, в отличие от выражения (2а), реализующего схему направленных разностей, имеет вид

$$\varphi_0^1 = \frac{(\mathbf{r}_0)_1}{1 + (\mathbf{r}_0)_1 - \mathbf{r}_{-1}} \cdot \varphi_{-1}^0 + \frac{1 - \mathbf{r}_{-1}}{1 + (\mathbf{r}_0)_1 - \mathbf{r}_{-1}} \cdot \varphi_0^0.$$
(8a)

Если считать, что дискретная аппроксимация ($\partial \phi / \partial t$) выполняется простейшим образом,

$$\partial \phi / \partial t \approx (\phi_0^1 - \phi_0^0) / \tau$$
,

схема (8а) означает, что для аппроксимации слагаемого $\mathbf{u} \cdot \partial \phi / \partial x$ принимается соотношение

$$\tau \cdot \mathbf{u} \cdot \partial \boldsymbol{\varphi} / \partial \mathbf{x} \approx \mathbf{r} \cdot (\boldsymbol{\varphi}_0^0 - \boldsymbol{\varphi}_{-1}^0) \,. \tag{9a}$$

При $u_0^0 < 0$, соотношения (4а)-(9а) заменяются очевидным образом

$$\mathbf{r} = (\mathbf{x}_0 - \mathbf{x})/(\mathbf{x}_1 - \mathbf{x}_0), \ -1 \le \mathbf{r} \le 0;$$
(46)

$$u^{0} = u_{0}^{0} + (x_{0} - x)/(x_{1} - x_{0}) \cdot (u_{0}^{0} - u_{1}^{0}) = u_{0}^{0} + r \cdot (u_{0}^{0} - u_{1}^{0});$$
(56)

$$\mathbf{r} = \frac{1}{1 - (\mathbf{r}_0)_{\rm r} + \mathbf{r}_1} \cdot (\mathbf{r}_0)_{\rm r}; \tag{66}$$

$$\mathbf{r}_{1} = \tau \cdot \mathbf{u}_{1}^{0} / (\mathbf{x}_{1} - \mathbf{x}_{0});$$
(76)

$$\varphi_0^1 = -\frac{(\mathbf{r}_0)_r}{1 - (\mathbf{r}_0)_r + \mathbf{r}_1} \cdot \varphi_1^0 + \frac{1 + \mathbf{r}_{-1}}{1 - (\mathbf{r}_0)_r + \mathbf{r}_1} \cdot \varphi_0^0;$$
(86)

$$\tau \cdot \mathbf{u} \cdot \partial \boldsymbol{\varphi} / \partial \mathbf{x} \approx \mathbf{r} \cdot (\boldsymbol{\varphi}_1^0 - \boldsymbol{\varphi}_0^0).$$
(96)

Приведенная вычислительная схема (8а,б) очевидно теряет смысл, если $\mathbf{r}_{-1} = (\mathbf{r}_0)_1 + 1$, в случае $\mathbf{u}_0^0 > 0$, либо если $\mathbf{r}_1 = (\mathbf{r}_0)_r - 1$, в случае если $\mathbf{u}_0^0 < 0$. Происхождение данного обстоятельства очевидно. Так как речь идет об интегрировании уравнения с переменными коэффициентами, среди решений возможны такие, которые при некоторых значениях независимых переменных t и x не описываются дифференциальным уравнением (1) и не аппроксимируются его дискретными аналогами, подобными схеме направленных разностей. В частности, при $\mathbf{u}_0^0 > 0$ равенство $\mathbf{r}_{-1} = (\mathbf{r}_0)_1 + 1$ отражает тот факт, что значение ϕ_{-1}^0 , смещаясь вправо со скоростью \mathbf{u}_{-1}^0 , через время τ «догонит» значение ϕ_0^0 , смещающееся со скоростью \mathbf{u}_0^0 , и в решении образуется разрыв, не описываемый уравнением (1) и его дискретными аналогами. Сходный смысл имеет равенство $\mathbf{r}_1 = (\mathbf{r}_0)_r - 1$, в случае если $\mathbf{u}_0^0 < 0$. Очевидно, не только такие значения \mathbf{r}_{-1} (или \mathbf{r}_1), но и близкие к ним значения не должны допускаться при выполнении расчета, поскольку они чреваты развитием вычислительной неустойчивости. Какую, конкретно, окрестность «критических» значений \mathbf{r}_{-1} или \mathbf{r}_1 необходимо исключить из расчета для обеспечения устойчивости схемы – ответ на этот вопрос зависит от (заранее неизвестного) характера

разыскиваемого решения. Поэтому мы ограничимся более жестким достаточным ограничением на величину числа Куранта, которое дает изучение устойчивости схемы (8а,б).

В случае постоянного числа Куранта схема (8а,б) совпадает со схемой направленных разностей и условие устойчивости имеет вид $|\mathbf{r}| \le 1$. Пусть теперь число Куранта – переменное и пусть $(\mathbf{r}_0)_1 > 0$ (т.е. $\mathbf{u}_0^0 > 0$). Поскольку схема – явная и область ее влияния распространяется на один интервал сетки, можно думать, что условиями устойчивости будут $(\mathbf{r}_0)_1 \le 1, \mathbf{r}_1 \le 1$. (10)

Однако, первое из этих условий оказывается лишним. В самом деле, согласно (8а) неизвестная величина с будущего временного слоя дается линейной комбинацией двух величин с прежнего слоя. Второго из условий (10) достаточно, чтобы оба коэффициента данной линейной комбинации были положительными и меньшими единицы, сумма же их всегда равна единице. Следовательно, если

$$\mathbf{r}_{-1} \le 1, \tag{11a}$$

то

 $\left|\phi_{0}^{1}\right| \leq \max\left\{\!\left|\phi_{0}^{0}\right|, \left|\phi_{-1}^{0}\right|\!\right\}\!\right\}\!.$

Аналогично, если

 $\left|\mathbf{r}_{1}\right| \leq 1, \tag{116}$

то для величины ϕ_0^1 , найденной в силу соотношения (86),

$$\left|\varphi_{0}^{1}\right| \leq \max\left\{\left|\varphi_{0}^{0}\right|, \left|\varphi_{1}^{0}\right|\right\}.$$

Окончательно, если в каждой расчетной точке X_k для момента времени «0» оба числа Куранта, «левое» и « правое», не превосходят по абсолютному значению единицу:

 $\left|\tau \cdot u_{k}^{0} / (x_{k} - x_{k-1})\right| \leq 1, \left|\tau \cdot u_{k}^{0} / (x_{k+1} - x_{k})\right| \leq 1,$ (12)

то норма вектора значений φ в момент времени «1», найденного согласно схеме (8а,б), не превзойдет в метрике С-пространства норму вектора значений φ в момент времени «0». В прогностической системе фигурируют уравнения более общего вида, чем уравнение переноса (1), поэтому условие (12) не гарантирует устойчивости расчета, но может быть принято как исходный ориентир, подлежащий дальнейшему экспериментальному уточнению.

Перейдем к вопросу о неявных аналогах схемы (8а,б), необходимых, если допускать значения чисел Куранта, большие единицы по модулю. Такая необходимость возникает, во всяком случае, при расчете вертикальной адвекции в условиях учета орографии.

В случае $(r_0)_1 > 0$, наибольшим значением r_{-1} , при котором может применяться явная схема (8a), согласно вышеприведенным соображениям будем считать $r_{-1} = 1$.

В этом случае (8а) дает $\phi_0^1 = \phi_{-1}^0$. Соответственно, при $(r_0)_r < 0$ и $r_1 = -1$ схема (8б) дает $\phi_0^1 = \phi_1^0$. Если $r_{-1} > 1$, то значение ϕ^0 , которое приносится в X_0 за время τ , расположено в момент времени «0» в точке левее X_{-1} , и по явной трехточечной схеме рассчитано быть не может. В этом случае необходимо обратиться к какому-либо аналогу схемы (8а,б), использующему элемент неявной аппроксимации. Но прежде всего, следует обобщить выражения (6а,б) для величины r, чтобы они сохраняли смысл при любых значениях u_{-1}^0, u_0^0, u_1^0 . Любое такое обобщение по существу будет эквивалентно некоторому предположению о поведении скорости переноса u_0 при $x < x_{-1}$ и $x > x_1$ (предположению априорному, не связанному с фактическим распределением u_0 за пределами вычислительного шаблона, поскольку мы хотим сохранить схему трехточечной,

ограниченной точками x_{-1}, x_0, x_1). Примем простейшее предположение: при $x < x_{-1}$, $u^0 = u^0_{-1}$; при $x > x_1$, $u^0 = u^0_1$. Это означает, что вместо выражений (6а,б) для величины г принимается в случае $u^0_0 > 0$:

$$\mathbf{r} = \begin{cases} \frac{1}{1 + (\mathbf{r}_0)_1 - \mathbf{r}_{-1}} \cdot (\mathbf{r}_0)_1 & \text{если} \cdot \mathbf{r}_{-1} \le 1, \\ \mathbf{r}_{-1} & \text{если} \cdot \mathbf{r}_{-1} > 1, \end{cases}$$
(13a)

и в случае $u_0^0 < 0$:

$$\mathbf{r} = \begin{cases} \frac{1}{1 - (\mathbf{r}_0)_r + \mathbf{r}_1} \cdot (\mathbf{r}_0)_r & \text{если} \cdot \mathbf{r}_{-1} \le 1, \\ \mathbf{r}_1 & \text{если} \cdot \mathbf{r}_{-1} > 1. \end{cases}$$
(136)

Укажем возможные обобщения схемы (8а,б) за счет привлечения элементов неявной аппроксимации, чтобы расчет сохранял устойчивость также и при $|\mathbf{r}| > 1$. В этом случае точка x, из которой значение ϕ^0 в точку \mathbf{x}_0 в момент «1» может быть расположена как левее, так и правее точки \mathbf{x}_{-1} (в случае $\mathbf{u}_0^0 > 0$), либо левее или правее точки \mathbf{x}_1 (в случае $\mathbf{u}_0^0 < 0$) – как показано на рис. 1.

Приведем два варианта обобщения схемы (8а,б). В первом варианте определим расположение точки пересечения луча, по которому значение ϕ^0 за время τ переносится из точки x в точку x₀, с отрезком AB. Такими точками при $u_0^0 > 0$ будут или точка C₁ (для случая r < 1) или точка C₂ (для случая r > 1). Значение ϕ в такой точке равно (в рамках принятых представлений о том, как совершается перенос) величине ϕ_0^1 . Вместе с тем, легко видеть, что отношение, в котором отрезок AB делится такой точкой (считая от точки A), независимо от величины r равно 1: r. Отсюда, принимая линейную интерполяцию переменной ϕ между точками A и B, находим, что

$$\varphi_0^1 = \frac{1}{1+r} \cdot \varphi_0^0 + \frac{r}{1+r} \cdot \varphi_{-1}^1, \qquad (14a)$$

что соответствует аппроксимации $\tau \cdot \mathbf{u} \cdot \partial \phi / \partial \mathbf{x} \approx \mathbf{r} \cdot (\phi_0^1 - \phi_{-1}^1)$ вместо аппроксимации (9a). При $\mathbf{u}_0^0 < 0$ находим

$$\varphi_0^1 = \frac{1}{1 - r} \cdot \varphi_0^0 - \frac{r}{1 - r} \cdot \varphi_1^1, \qquad (146)$$

что соответствует аппроксимации $\tau \cdot \mathbf{u} \cdot \partial \phi / \partial \mathbf{x} \approx \mathbf{r} \cdot (\phi_1^1 - \phi_0^1)$ вместо аппроксимации (96).

Уравнения (14а,б) относительно неизвестных должны решаться прогонкой.

Во втором варианте поступаем следующим образом. Вычисляем г согласно (13а) или (13б). При $|\mathbf{r}| \leq 1$ используем одну из явных расчетных формул, (8а), если $\mathbf{u}_0^0 > 0$, или (8б), если $\mathbf{u}_0^0 < 0$. При $|\mathbf{r}| > 1$, вводим элемент неявной аппроксимации. Пусть, например, $\mathbf{r} > 1$ ($\mathbf{u}_0^0 > 0$). В этом случае находим (см. рис. 1), что точка H делит отрезок FA (считая от точки

F) в отношении (r-1)/1. Полагая, что значение $\phi(H)$ дается линейной интерполяцией значений $\phi(F) = \phi_{-1}^0$ и $\phi(A) = \phi_{-1}^1$, находим, вместо (14а),

$$\phi_0^1 = \phi(\mathbf{H}) = \frac{1}{r} \phi_{-1}^0 + \frac{r-1}{r} \phi_{-1}^1,$$
(15a)

что соответствует явной/неявной аппроксимации

$$\tau \mathbf{u}(\partial \boldsymbol{\varphi}/\partial \mathbf{x}) \sim \boldsymbol{\varphi}_0^0 - \boldsymbol{\varphi}_{-1}^0 + (\mathbf{r} - 1)(\boldsymbol{\varphi}_0^1 - \boldsymbol{\varphi}_{-1}^1),$$

в которой доля неявной аппроксимации растет с ростом r.

При $u_0^0 < 0$ и r < -1, находим аналогично, вместо (146),

$$\varphi_0^1 = -\frac{1}{r}\varphi_1^0 + \frac{r+1}{r}\varphi_1^1, \qquad (156)$$

что соответствует аппроксимации

$$\tau u(\partial \varphi/\partial x) \sim -(\varphi_1^0 - \varphi_0^0) + (r+1)(\varphi_1^1 - \varphi_0^1),$$

Рис. 1. Схема расчетной сетки.

Обе схемы (14а,б) и (8а,б), (15а,б) – в тривиальном случае г=const устойчивы при любом значении г. В случае же переменного профиля \mathbf{u}^0 (и, соответственно, г), для обеих схем, поскольку они заключают элементы неявной аппроксимации, невозможен не только Фурье-анализ устойчивости, но и анализ, подобный тому, который был проведен для явной схемы (8а,б). Схема (14а,б) использует полностью неявную аппроксимацию производной $(\partial \phi / \partial x)$, а схема (8а,б), (15а,б) – частично неявную, откуда естественно предположить – и численные эксперименты это подтверждают – что схема (14а,б) сохраняет устойчивость на более широком классе решений, чем схема (8а,б), (15а,б). Одновременно, большая устойчивость схемы (14а,б) связана с большей величиной счетной вязкости и соответствующим ухудшением аппроксимации, сравнительно со схемой (8а,б), (15а,б).

Все вышеизложенные схемы базируются на предположении, что на временном отрезке τ субстанция ϕ переносится из некоторой точки X в точку X₀ с постоянной скоростью. Переменность скорости переноса u⁰ учитывается лишь в том отношении, что из разных начальных x-точек перенос в конечную точку X₀ совершается с разной скоростью. Естественным завершающим уточнением – в рамках избранных общих представлений –

будет учет того, что скорость меняется также и в процессе переноса из каждой конкретной X-точки в точку X_0 .

Начнем, как и выше, со случая $u_0^0 > 0((r_0)_1 > 0)$. Найдем, как меняется со временем величина г в точке, смещающейся с переменной скоростью u^0 , даваемой выражением (5а). Дифференцируя по времени соотношение (4а), определяющее г, получим:

$$\frac{\mathrm{d}r}{\mathrm{d}t} = -\frac{1}{x_0 - x_1} \frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{1}{x_0 - x_1} u^0 = -\frac{1}{x_0 - x_{-1}} \left[u_0^0 + r \left(u_{-1}^0 - u_0^0 \right) \right].$$

Таким образом, дифференциальное уравнение, определяющее зависимость r(t), имеет вид:

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\mathbf{t}} + \frac{\mathbf{u}_{-1}^0 - \mathbf{u}_0^0}{\mathbf{x}_0 - \mathbf{x}_{-1}}\mathbf{r} = -\frac{\mathbf{u}_0^0}{\mathbf{x}_0 - \mathbf{x}_{-1}}$$

откуда

$$\mathbf{r}(\mathbf{t}) = \mathbf{C} \cdot \exp\left(\frac{\mathbf{u}_{0}^{0} - \mathbf{u}_{-1}^{0}}{\mathbf{x}_{0} - \mathbf{x}_{-1}}\mathbf{t}\right) + \frac{\mathbf{u}_{0}^{0}}{\mathbf{u}_{0}^{0} - \mathbf{u}_{-1}^{0}} = \mathbf{C} \cdot \exp\left[\left((\mathbf{r}_{0})_{1} - \mathbf{r}_{-1}\right)\frac{\mathbf{t}}{\tau}\right] + \frac{(\mathbf{r}_{0})_{1}}{(\mathbf{r}_{0})_{1} - \mathbf{r}_{-1}}.$$

Постоянная интегрирования определяется из условия $r(\tau) = 0$, и окончательно:

$$\mathbf{r}(t) = \frac{(\mathbf{r}_0)_1}{\mathbf{r}_{-1} - (\mathbf{r}_0)_1} \cdot \left\{ \exp\left[\left(\mathbf{r}_{-1} - (\mathbf{r}_0)_1 \right) \left(1 - \frac{t}{\tau} \right) \right] - 1 \right\}.$$

Искомая величина r, определяющая, согласно (4а), начальную точку x, которая, двигаясь с переменной скоростью (5а), переместится за время τ в точку x_0 , дается значением r(0):

$$\mathbf{r} = \frac{\exp(\mathbf{r}_{-1} - (\mathbf{r}_0)_1) - 1}{\mathbf{r}_{-1} - (\mathbf{r}_0)_1} (\mathbf{r}_0)_1, \ (\mathbf{r}_0)_1 > 0.$$
(16a)

Аналогичные выкладки на основе соотношений (4б), (5б) дают для случая $u_0^0 < 0((r_0)_r < 0)$:

$$\mathbf{r} = \frac{\exp((\mathbf{r}_0)_r - \mathbf{r}_1) - 1}{(\mathbf{r}_0)_r - \mathbf{r}_1} (\mathbf{r}_0)_r, \ (\mathbf{r}_0)_r < 0.$$
(166)

Подведем итог. Отправляясь от схемы «направленных разностей», получаем трехуровневую иерархию численных схем описания адвективного переноса,. Все схемы базируются на выражении, определяющем (через известные величины) параметр г, который, в свою очередь, определяет положение той точки X в начальный момент времени «0», которая к моменту времени «1» сместится в точку X₀, принеся туда искомое значение субстанции φ . Для исходной модели «направленных разностей» скорость переноса считается независимой от X -координаты и равной u_0^0 слева от точки X₀ (если $u_0^0>0$) или справа (если $u_0^0<0$). Выражение для г в этом случае формируется, исходя только из этого значения u_0^0 , и равно, согласно (3), (r_0)₁ либо (r_0)_r для $u_0^0>0$, либо $u_0^0<0$ соответственно. В модели следующего уровня перенос субстанции φ из начальной точки X в конечную точку X₀ по-прежнему считается совершающимся с постоянной скоростью, но сама эта скорость теперь зависит от положения начальной х-точки, согласно линейным соотношениям (5а), (5б). В этом случае в выражениях для величины г прежние значения (r_0)₁ и (r_0)_r снабжаются множителями, согласно (6а) и (6б). Эти выражения теряют смысл при сильной перемениоти

профиля скорости \mathbf{u}^0 , подразумевающей «опрокидывание» потока на протяжении τ -интервала времени, и должны быть дополнены ограничениями (11а,б). Наконец, в последней модели скорость потока считается не только зависящей от положения начальной х-точки, но и меняющейся, согласно тем же соотношениям (5а,б), по мере того, как точка, на протяжении времени τ , смещается вдоль оси х. В этом случае в выражениях для величины г значения $(\mathbf{r}_0)_1$ и $(\mathbf{r}_0)_r$ снабжаются другими множителями, согласно (16а,б). Обратим внимание, что, в отличие от модели предыдущего уровня, теперь множители, которыми снабжаются величины $(\mathbf{r}_0)_r$, - гладкие функции разности чисел Куранта, δ_1 или δ_r ,

$$\delta_1 = \mathbf{r}_{-1} - (\mathbf{r}_0)_1, \ \delta_r = (\mathbf{r}_0)_r - \mathbf{r}_1, \tag{17}$$

монотонно растущие от нуля до бесконечности с ростом δ_1 и δ_r от $-\infty$ до $+\infty$. Это очевидно соответствует тому, что в данной физической модели «опрокидывание» потока в пределах τ -интервала времени – невозможно. При $(r_0)_1 > 0$ и $\delta_1 = 0$, а также при $(r_0)_r < 0$ и $\delta_r = 0$ - т.е. в случае, если перенос в каком-либо направлении совершается с постоянной скоростью – множитель в (16а) при $(r_0)_1$ либо множитель в (16б) при $(r_0)_r$ обращается в единицу, и схема совпадает со схемой направленных разностей.

Для каждой из трех приведенных схем возможны обобщения ее за счет привлечения неявной аппроксимации пространственной производной $\partial \phi / \partial x$, позволяющие вести расчет при значениях $|\mathbf{r}| > 1$. Два таких обобщения подсказываются самой структурой расчетной сетки. Одно ведет к более устойчивой численной схеме с полностью неявной аппроксимацией $\partial \phi / \partial x$: по найденному значению г, искомое значение ϕ_0^1 рассчитывается в этом случае согласно выражению (14а,б). Другое обобщение комбинирует явную и неявную аппроксимацию $\partial \phi / \partial x$. В этом случае величина ϕ_0^1 рассчитывается согласно (8а,б) в тех точках x_0 , где $|\mathbf{r}| \le 1$, и согласно (15а,б) – в тех точках, где $|\mathbf{r}| > 1$. В явном варианте $|\mathbf{r}| \le 1$ мы называем эту схему схемой (8а,б) условно, для краткости. В строгом смысле, это будет схемой (8а,б) только в том случае, если величина г дается выражениями (6а,б). Здесь же мы понимаем ее в более широком значении: ϕ_0^1 дается линейной комбинацией ϕ_{-1}^0 и ϕ_0^0 с весами г и (1-г) или комбинацией ϕ_1^0 и ϕ_0^0 с весами –г и (1+г). Поскольку при обоих подходах дискретное уравнение содержит, вообще говоря, значения ϕ^1 в более чем одной расчетной точке, решение не может быть найдено локально и требуется выполнение прогонки.

Для использования каких-либо из приведенных схем в прогностической модели необходимо еще рассмотреть их в частном случае уравнения квазилинейного переноса, который, в терминах уравнения (1), соответствует $\varphi \equiv u$:

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u}\frac{\partial \mathbf{u}}{\partial \mathbf{x}} = 0.$$
 (18)

Действительно, даже при отсутствии орографических неоднородностей, механизм переноса каждого компонента скорости по соответствующей ему координате описывается оператором левой части уравнения (18). А в случае учета рельефа, перенос по вертикальной координате также и горизонтальных компонентов скорости (а не только вертикального) описывается с участием данного оператора.

Что дают вышеприведенные схемы применительно к уравнению (18)? Алгоритмически, применимость/неприменимость всех схем остается прежней. Но тем самым данный частный случай как раз иллюстрирует наличие вычислительных трудностей, не обнаруживаемых алгоритмической стороной дела и связанных с описанием нелинейных процессов.

В самом деле, поскольку мы предположили кусочно-линейное распределение начального поля u^0 , даваемое (начнем со случая $u_0^0 > 0$) формулами (4a), (5a), решение уравнения (18) слева от точки x_0 на временном интервале (0, τ) может быть выписано аналитически. Общее решение уравнения (18):

$$\mathbf{u}(\mathbf{t},\mathbf{x}) = \mathbf{f}(\mathbf{x} - \mathbf{u}\mathbf{t}),\tag{19}$$

где вид функциональной зависимости определяется заданным начальным распределением u(0,x). В нашем случае, согласно (5а),

$$f(x) = u_0^0 + (x_0 - x)(u_{-1}^0 - u_0^0)/(x_0 - x_{-1}),$$

и решение (19) в этом конкретном случае превращается в

$$u = \frac{u_0^0 - u_{-1}^0}{x_0 - x_{-1}} (x - ut) - \frac{u_0^0 - u_{-1}^0}{x_0 - x_{-1}} x_0 + u_0^0;$$
$$u = \frac{u_0^0 + \frac{x_0 - x}{x_0 - x_{-1}} (u_{-1}^0 - u_0^0)}{1 - \frac{u_{-1}^0 - u_0^0}{x_0 - x_{-1}} t} = \frac{u_0^0 + r(u_{-1}^0 - u_0^0)}{1 - (r_{-1} - (r_0)_1) \frac{t}{\tau}}.$$

Таким образом, решение представляет собой начальное линейное распределение u_0^0 , которое в течением времени как одно целое растет или затухает для δ_1 положительного или отрицательного соответственно, см. (17). В частности, к концу шага, через время τ ,

$$\mathbf{u}^{1} = \frac{\mathbf{u}_{0}^{0} + r(\mathbf{u}_{-1}^{0} - \mathbf{u}_{0}^{0})}{1 - \delta_{1}},$$

а искомое значение

$$u^{1} = u_{0}^{0} / (1 - \delta_{1}).$$
 (20a)

Аналогично, если $u_0^0 < 0$,

$$u_0^1 = u_0^0 / (1 - \delta_r).$$
 (206)

Выражения (20а,б) указывают, в частности, что для квазилинейного переноса, при принятом кусочно-линейном профиле начального распределения точное решение к концу шага теряет смысл, если $\delta_1 = 1$ (в случае $u_0^0 > 0$) или $\delta_r = 1$ (если $u_0^0 < 0$). Тот факт, что расчет по схеме (16а,б) алгоритмически выполним и в этом случае, означает, что численное решение «уходит» от решения дифференциального уравнения, что также чревато, вообще говоря, развитием вычислительной неустойчивости и в любом случае нежелательно физически.

Ограничение $\delta_l < 1$ (как и $\delta_r < 1$) уже возникало выше в связи со схемой (6а,б). Приведем оценки (ниже мы воспользуемся ими еще в одной связи), указывающие, что в рассмотрении полного диапазона изменчивости δ_l (как и δ_r), $-\infty < \delta_l$, $\delta_r < \infty$, нет ни физической необходимости, ни физического смысла. Физически-осмысленные ситуации заведомо оперируют лишь небольшими значениями $|\delta_l|$ и $|\delta_r|$, а ситуации, отвечающие большим значениям этих параметров, физически нереалистичны или катастрофичны, и от расчетных формул в этих условиях естественно ожидать таких эффектов нелинейной неустойчивости, которые, в сколько-нибудь общей форме, аналитическими методами усмотрены быть не могут.

В самом деле, физически мотивированная и вычислительно реализуемая величина временного шага в локальном прогнозе τ ≈ 300 с. Далее, что касается горизонтальной адвекции, пространственный шаг сетки по горизонтальным координатам в нашей модели

 $\Delta x = \Delta y = 10^4$ м (что отвечает, по порядку величины, общемировой практике для моделей локального прогноза). Отсюда, $|\delta_1|$ или $|\delta_r|$, равное 1, означает, что соответствующий горизонтальный компонент скорости меняется на расстоянии шага сетки на 33 м/с. Очевидно, таким образом, что не только ограничение $\delta_1 < 1$ ($\delta_r < 1$) не будет фактическим ограничением при физически репрезентативном расчете, но оправдано и ограничение $\delta_1 < 0.25$ ($\delta_r < 0.25$). Что касается вертикальной адвекции, единая оценка характерных значений δ_1 , δ_r затруднена, т.к. вертикальный шаг расчетной сетки меняется с высотой от ~10 м у поверхности земли до ~1000 м в верхних слоях области прогноза. Но в среднем, величина $|\delta_1| = 1$ или $|\delta_r| = 1$ означает, что скорость вертикальной адвекции (в частности, если неоднородный рельеф отсутствует, - просто вертикальная скорость) меняется на 30 см/100 м, так что и в этом случае ограничение $|\delta_1|$ и $|\delta_r|$ величиной 0.5, и даже величиной 0.25, физически оправдано. Под ограничениями на величины δ_1 и δ_r мы имеем в виду только соответствующие ограничения при восстановлении величины r, отвечающие той или иной схеме расчета адвекции, но не какое-либо изменение самого поля \mathbf{u}^0 , полученного в ходе выполнения предшествующего временного шага. Другими словами, при больших значениях $|\delta_1|$ или $|\delta_r|$ мы нарушаем равенства (17), но не меняем величины в правых частях этих неравенств.

Все вышеприведенные схемы вводились в прогностическую модель и испытывались в экспериментальных прогностических расчетах для Московского региона на срок 24 часа. Итоговая статистика влияния разных схем на качество прогноза к настоящему времени отсутствует. Но получены выводы, необходимые в практической работе с данными схемами. Приведем главные из них.

Нетрудно видеть, что с переходом от схемы направленных разностей (2а,б) к схеме (ба,б) область влияния схемы растет, если $\delta_1 > 0$ ($\delta_r > 0$) и убывает, если $\delta_1 < 0$ ($\delta_r < 0$) Для схемы же (16а,б) область влияния при $\delta_1 > 0$ ($\delta_r > 0$) меньше, чем для схемы (6а,б), но по-прежнему больше, чем для схемы (2a,б), а при $\delta_1 < 0$ ($\delta_r < 0$) больше, чем для схемы (6а,б), но по-прежнему меньше, чем для схемы (2а,б). Но большая область влияния схемы – при одном и том же расчетном шаблоне – означает больший «запас прочности» схемы в отношении ее устойчивости. Такой запас в нашем случае необходим при описании негладких нелинейных процессов для компенсации основного упрощающего предположения, лежащего в основе всех схем: на всем протяжении шага τ скорость адвекции определяется только ее распределением \mathbf{u}^0 в начальный момент времени. Эти рассуждения приводят к предположению, что необходимым условием устойчивой работы и схемы (16а,б), и, в особенности, схемы (6а,б) должно быть ограничение на величины δ_1 и δ_r при их отрицательных значениях. Это предположение подтверждается расчетами. Ограничение на отрицательные значения δ_1 и δ_r (мы принимаем δ_1 , $\delta_r \ge -0.5$ либо δ_1 , $\delta_r \ge -0.25$) необходимо для устойчивости схем (6а,б) и (16а,б), а ограничение на положительные значения не необходимо. Тем не менее, с учетом вышеприведенного анализа квазилинейного переноса и оценок физической оправданности ограничений на величины $|\delta_1|$, $|\delta_r|$ окончательно мы принимали на обе величины ограничение $|\delta_1|$, $|\delta_r| \le 0.5$.

В заключение приведем прогностическую иллюстрацию.

На рис.2 и 3 приведены объективный анализ поля температуры (⁰C) для уровня 150 м (средняя высота Московского региона) за 00 МСВ 4 ноября 2001 г. и результат суточного

прогноза на этот же срок: приземная температура, приведенная к уровню 150 м. Расчет горизонтальной адвекции выполнялся по явной схеме направленных разностей, (2a,б),

4 ноября 2001 г.

расчет вертикальной адвекции – также по схеме направленных разностей, но в неявной реализации (14а,б). На рис.4 приведен суточный прогноз того же поля на тот же срок, но с адвекцией, рассчитанной по уточненной схеме (16а,б): для горизонтальной адвекции – в явном варианте (расчетный шаг τ , как и в первом прогнозе, выбирался из условия $|\mathbf{r}| \leq 1$ по всей расчетной области), а для вертикальной адвекции – в явном/неявном варианте (8а,б), (15а,б).

Фактическое поле температуры (рис.2) характеризуется значениями в диапазоне от 2^{0} до -5^{0} С и общим ростом температуры с востока на запад и с юга на север.

В прогнозируемых полях, в обоих вариантах, диапазон значений несколько шире фактического, главным образом за счет понижения нижней границы. На рис.3 границы этого диапазона равны 0.5^{0} и -5.5^{0} С, а на рис.4 - 0^{0} и $-4,5^{0}$ С соответственно. В этом отношении два варианта прогноза близки. Однако в других отношениях они расходятся значительно. В варианте уточненного описания адвекции (рис.4) поле заметным образом более

меандрировано, нежели на рис.3. Возможность описания более детальных образований за счет уточненного описания адвективного переноса – налицо. Также и общая ориентация поля на рис. 4 – иная, чем на рис. 3, ближе совпадающая с фактической. На рис. 3 температура в целом растет с севера на юг и с запада на восток, в противоречии с данными анализа (рис. 2), тогда как прогноз на рис. 4 верно отражает рост температуры с юга на север, а в западно-восточном направлении распределение в целом уравновешенное. К особенностям прогноза с уточненной схемой адвекции (рис. 4) относится выраженный температурный минимум в районе Наро-Фоминска/Обнинска, отсутствующий, правда, в данных анализа.

Таким образом, уточненное описание адвективного переноса – необходимый и заметный фактор в повышении детальности и точности гидродинамического локального прогноза.

Рис. 3 .Суточный прогноз температуры (⁰С) на уровне 150 м для Московского региона на 00 МСВ 4 ноября 2001 г. (расчет адвекции по схеме направленных разностей).

Рис. 4. Суточный прогноз температуры (⁰С) на уровне 150 м для Московского региона на 00 МСВ 4 ноября 2001 г. (расчет адвекции по уточненной схеме).

УДК 551.509.32

Численные схемы для оператора адвекции в модели локального прогноза. Пекелис.Е.М.// Труды Гидрометцентра России, 2002, с.

Изложена методика построения численных схем, аппроксимирующих линейный (скорость переноса может зависеть от пространственных и временной координат) и квазилинейный операторы переноса. Полученные схемы представляют собой уточнения схемы «направленных разностей», учитывающие изменение скорости переноса в окрестности той точки, относительно которой выполняется дискретная аппроксимация дифференциального оператора. Приводятся примеры прогноза с использованием традиционной схемы направленных разностей и вновь полученных схем.

Ил.4.

Дубликат формул к статье Е.М.Пекелиса «Численные схемы для оператора адвекции в модели локального прогноза»

$$\frac{\partial \varphi}{\partial t} + \mathbf{u} \cdot \frac{\partial \varphi}{\partial x} = 0.$$
(1)
$$\frac{\varphi_0^1 - \varphi_0^0}{\partial t} + \mathbf{u}_0^0 \cdot \frac{\varphi_0^0 - \varphi_{-1}^0}{\partial t} = 0.$$
если $\mathbf{u}_0^0 \ge 0:$

$$\frac{\tau}{\tau} + u_0 + u_0 + \frac{\tau}{x_0 - x_{-1}} = 0, \text{ если } u_0 \ge 0, \\
\frac{\phi_0^1 - \phi_0^0}{\tau} + u_0^0 + \frac{\phi_1^0 - \phi_0^0}{x_1 - x_0} = 0, \text{ если } u_0^0 \le 0. \\
\phi_0^1 = (1 - (r_0)_1) \cdot \phi_0^0 + (r_0)_1 \cdot \phi_{-1}^0, \text{ если } (r_0)_1 \ge 0;$$
(2a)

$$\Phi_0^1 = (1 - (r_0)_1) \cdot \Phi_0^2 + (r_0)_1 \cdot \Phi_{-1}^2, \quad \text{если} (r_0)_1 \ge 0; \quad (2a)$$

$$\Phi_0^1 = (1 + (r_0)_1) \cdot \Phi_0^2 - (r_0)_1 \cdot \Phi_{-1}^0, \quad \text{если} (r_0)_1 \le 0 \quad (2b)$$

$$\phi_0 = (1 + (r_0)_r) \cdot \phi_0 - (r_0)_r \cdot \phi_1, \quad \text{если} (r_0)_r \le 0.$$
(26)

$$(\mathbf{r}_{0})_{1} = \tau \cdot \mathbf{u}_{0}^{0} / (\mathbf{x}_{0} - \mathbf{x}_{-1}), (\mathbf{r}_{0})_{r} = \tau \cdot \mathbf{u}_{0}^{0} / (\mathbf{x}_{1} - \mathbf{x}_{0}),$$
(3)

$$(\mathbf{r}_{0})_{1} \leq 1,$$
если $(\mathbf{r}_{0})_{1} \geq 0;$

$$\mathbf{r} = (\mathbf{x}_0 - \mathbf{x}) / (\mathbf{x}_0 - \mathbf{x}_{-1}), \ 0 \le \mathbf{r} \le 1.$$
(4a)

$$u^{0} = u_{0}^{0} + (x_{0} - x)/(x_{0} - x_{-1}) \cdot (u_{-1}^{0} - u_{0}^{0}) = u_{0}^{0} + r \cdot (u_{-1}^{0} - u_{0}^{0}).$$
(5a)
$$r \cdot (x_{0} - x_{-1}) = (u_{0}^{0} + r \cdot (u_{-1}^{0} - u_{0}^{0})) \cdot \tau$$

$$r = \frac{1}{1 + (r_0)_1 - r_{-1}} \cdot (r_0)_1,$$
(6a)

$$\mathbf{r}_{-1} = \tau \cdot \mathbf{u}_{-1}^{0} / (\mathbf{x}_{0} - \mathbf{x}_{-1}).$$
(7a)

$$\begin{split} \phi^{0} &= \phi^{0}_{0} + r \cdot (\phi^{0}_{-1} - \phi^{0}_{0}) = r \cdot \phi^{0}_{-1} + (1 - r) \cdot \phi^{0}_{0}, \\ \phi^{1}_{0} &= \frac{(r_{0})_{1}}{1 + (r_{0})_{1} - r_{-1}} \cdot \phi^{0}_{-1} + \frac{1 - r_{-1}}{1 + (r_{0})_{1} - r_{-1}} \cdot \phi^{0}_{0}. \end{split}$$
(8a)

$$\frac{\partial \phi}{\partial t} \approx (\phi_0^1 - \phi_0^0) / \tau,$$

$$\tau \cdot \mathbf{u} \cdot \frac{\partial \phi}{\partial x} \approx \mathbf{r} \cdot (\phi_0^0 - \phi_{-1}^0).$$
 (9a)

$$\mathbf{r} = (\mathbf{x}_0 - \mathbf{x})/(\mathbf{x}_1 - \mathbf{x}_0), \ -1 \le \mathbf{r} \le \mathbf{0};$$
(46)

$$u^{0} = u_{0}^{0} + (x_{0} - x)/(x_{1} - x_{0}) \cdot (u_{0}^{0} - u_{1}^{0}) = u_{0}^{0} + r \cdot (u_{0}^{0} - u_{1}^{0});$$
(56)

$$\mathbf{r} = \frac{1}{1 - (\mathbf{r}_0)_r + \mathbf{r}_1} \cdot (\mathbf{r}_0)_r;$$
(66)

$$\mathbf{r}_{1} = \tau \cdot \mathbf{u}_{1}^{0} / (\mathbf{x}_{1} - \mathbf{x}_{0}); \tag{76}$$

$$\varphi_0^1 = -\frac{(\mathbf{r}_0)_r}{1 - (\mathbf{r}_0)_r + \mathbf{r}_1} \cdot \varphi_1^0 + \frac{1 + \mathbf{r}_{-1}}{1 - (\mathbf{r}_0)_r + \mathbf{r}_1} \cdot \varphi_0^0;$$
(86)

$$\tau \cdot \mathbf{u} \cdot \partial \phi / \partial \mathbf{x} \approx \mathbf{r} \cdot (\phi_1^0 - \phi_0^0).$$
(96)

$$r_{-1} \le 1$$
, (11a)

$$\begin{aligned} |\phi_{0}^{1}| &\leq \max\{\!\!|\phi_{0}^{0}|,\!|\phi_{-1}^{0}|\!\}. \\ & |r_{1}| \leq 1, \\ & |\phi_{0}^{1}| \leq \max\{\!\!|\phi_{0}^{0}|,\!|\phi_{1}^{0}|\!\}. \end{aligned}$$
(116)

$$\left| \tau \cdot u_{k}^{0} / (x_{k} - x_{k-1}) \right| \leq 1, \left| \tau \cdot u_{k}^{0} / (x_{k+1} - x_{k}) \right| \leq 1,$$
(12)

$$\mathbf{r} = \begin{cases} \frac{1}{1 + (\mathbf{r}_0)_1 - \mathbf{r}_{-1}} \cdot (\mathbf{r}_0)_1 & \text{если} \cdot \mathbf{r}_{-1} \le 1, \\ \mathbf{r}_{-1} & \text{если} \cdot \mathbf{r}_{-1} > 1, \end{cases}$$
(13a)

$$\mathbf{r} = \begin{cases} \frac{1}{1 - (\mathbf{r}_0)_r + \mathbf{r}_1} \cdot (\mathbf{r}_0)_r & \text{если} \cdot \mathbf{r}_{-1} \le 1, \\ \mathbf{r}_1 & \text{если} \cdot \mathbf{r}_{-1} > 1. \end{cases}$$
(136)

$$\varphi_0^1 = \frac{1}{1+r} \cdot \varphi_0^0 + \frac{r}{1+r} \cdot \varphi_{-1}^1, \qquad (14a)$$

$$\varphi_{0}^{1} = \frac{1}{1-r} \cdot \varphi_{0}^{0} - \frac{r}{1-r} \cdot \varphi_{1}^{1}, \qquad (146)$$

$$\varphi_{0}^{1} = \varphi(H) = \frac{1}{r} \varphi_{-1}^{0} + \frac{r-1}{r} \varphi_{-1}^{1}, \qquad (15a)$$

$$\tau u(\partial \varphi / \partial x) \sim \varphi_{0}^{0} - \varphi_{-1}^{0} + (r-1)(\varphi_{0}^{1} - \varphi_{-1}^{1}),$$

$$\varphi_0^1 = -\frac{1}{r}\varphi_1^0 + \frac{r+1}{r}\varphi_1^1, \qquad (156)$$

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\mathbf{t}} = -\frac{1}{\mathbf{x}_{0} - \mathbf{x}_{1}} \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}\mathbf{t}} = -\frac{1}{\mathbf{x}_{0} - \mathbf{x}_{1}} \mathbf{u}^{0} = -\frac{1}{\mathbf{x}_{0} - \mathbf{x}_{-1}} \left[\mathbf{u}_{0}^{0} + \mathbf{r} \left(\mathbf{u}_{-1}^{0} - \mathbf{u}_{0}^{0} \right) \right].$$

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\mathbf{t}} + \frac{\mathbf{u}_{-1}^{0} - \mathbf{u}_{0}^{0}}{\mathbf{x}_{0} - \mathbf{x}_{-1}} \mathbf{r} = -\frac{\mathbf{u}_{0}^{0}}{\mathbf{x}_{0} - \mathbf{x}_{-1}},$$

$$\mathbf{r}(\mathbf{t}) = \mathbf{C} \cdot \exp\left(\frac{\mathbf{u}_{0}^{0} - \mathbf{u}_{-1}^{0}}{\mathbf{x}_{0} - \mathbf{x}_{-1}}\mathbf{t}\right) + \frac{\mathbf{u}_{0}^{0}}{\mathbf{u}_{0}^{0} - \mathbf{u}_{-1}^{0}} = \mathbf{C} \cdot \exp\left[\left((\mathbf{r}_{0})_{1} - \mathbf{r}_{-1}\right)\frac{\mathbf{t}}{\mathbf{\tau}}\right] + \frac{(\mathbf{r}_{0})_{1}}{(\mathbf{r}_{0})_{1} - \mathbf{r}_{-1}}.$$

$$\mathbf{r}(\mathbf{t}) = \frac{(\mathbf{r}_{0})_{1}}{\mathbf{r}_{-1} - (\mathbf{r}_{0})_{1}} \cdot \left\{ \exp\left[\left(\mathbf{r}_{-1} - (\mathbf{r}_{0})_{1}\right)\left(1 - \frac{\mathbf{t}}{\mathbf{\tau}}\right)\right] - 1 \right\}.$$

$$\mathbf{r} = \frac{\exp(\mathbf{r}_{-1} - (\mathbf{r}_0)_1) - 1}{\mathbf{r}_{-1} - (\mathbf{r}_0)_1} (\mathbf{r}_0)_1, \ (\mathbf{r}_0)_1 > 0.$$
(16a)

$$\mathbf{r} = \frac{\exp((\mathbf{r}_0)_{\mathrm{r}} - \mathbf{r}_1) - 1}{(\mathbf{r}_0)_{\mathrm{r}} - \mathbf{r}_1} (\mathbf{r}_0)_{\mathrm{r}}, \ (\mathbf{r}_0)_{\mathrm{r}} < 0.$$
(166)

$$\delta_{1} = \mathbf{r}_{-1} - (\mathbf{r}_{0})_{1}, \ \delta_{r} = (\mathbf{r}_{0})_{r} - \mathbf{r}_{1},$$
(17)
$$\frac{\partial \mathbf{u}}{\partial \mathbf{u}} + \mathbf{u} \frac{\partial \mathbf{u}}{\partial \mathbf{u}} = 0$$
(18)

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u}\frac{\partial \mathbf{u}}{\partial \mathbf{x}} = 0.$$
 (18)

$$u(t,x) = f(x - ut),$$
 (19)

$$f(x) = u_0^0 + (x_0 - x)(u_{-1}^0 - u_0^0)/(x_0 - x_{-1}),$$

$$u = \frac{u_0^0 - u_{-1}^0}{x_0 - x_{-1}}(x - ut) - \frac{u_0^0 - u_{-1}^0}{x_0 - x_{-1}}x_0 + u_0^0;$$

$$u = \frac{u_0^0 + \frac{x_0 - x}{x_0 - x_{-1}} \left(u_{-1}^0 - u_0^0 \right)}{1 - \frac{u_{-1}^0 - u_0^0}{x_0 - x_{-1}} t} = \frac{u_0^0 + r \left(u_{-1}^0 - u_0^0 \right)}{1 - \left(r_{-1} - \left(r_0 \right)_1 \right) \frac{t}{\tau}}.$$
$$u^1 = \frac{u_0^0 + r \left(u_{-1}^0 - u_0^0 \right)}{1 - \delta_1},$$
$$u^1 = u_0^0 / (1 - \delta_1).$$
(20a)