М.Ю. Кулаков, И.М. Ашик, К.В. Фильчук

ТЕХНОЛОГИЯ РАСЧЕТА И КРАТКОСРОЧНОГО ПРОГНОЗА ДРЕЙФА ЛЬДА НА АКВАТОРИИ СЕВЕРНОГО ЛЕДОВИТОГО ОКЕАНА И АРКТИЧЕСКИХ МОРЕЙ

Дрейф льда — это сложный процесс, который определяется воздействием ветра и течений, наклоном поверхности моря, морфометрическими параметрами самой льдины и характеристиками окружающих льдов. Такое обилие необходимой информации может быть получено только в результате использования модели совместной циркуляции вод и льдов. Разработанная технология прогноза дрейфа льда на акватории Северного Ледовитого океана (СЛО) и его морей базируется на модели *AARI-IOCM* [1]. *AARI–IOCM* представляет собой результат объединения трех моделей: трехмерной бароклинной модели циркуляции вод, модели дрейфа ледяного покрова и термодинамической модели морского льда. В целом ряде работ [2, 3] было показано, что *AARI-IOCM* достаточно хорошо воспроизводит ледовые условия и циркуляцию вод и льдов в Северном Ледовитом океане. При краткосрочных прогнозах термодинамический блок модели не задействован.

На основании модели *AARI-IOCM* уже разработаны метод и технологии расчета и краткосрочного прогноза уровня моря и течений в Северном Ледовитом океане и его морях, которые получили рекомендацию ЦМКП Росгидромета для использования в оперативной работе ААНИИ (Решение Центральной методической комиссии по гидрометеорологическим и гелиогеофизическим прогнозам от 24 апреля 2013 г.). В последнее время модель также успешно используется в оперативной технологии прогноза айсбергов [4, 5].

1. Модель циркуляции вод

Систему уравнений термогидродинамики океана запишем в виде: — уравнения движения в приближении Буссинеска

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} - fv = -\frac{1}{\rho_0} \frac{\partial P}{\partial x} + \frac{\partial}{\partial z} A_Z \frac{\partial u}{\partial z} + \frac{\partial}{\partial x} A_L \frac{\partial u}{\partial x} + \frac{\partial}{\partial y} A_L \frac{\partial u}{\partial y}, \quad (1.1)$$

 $\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} + fu = -\frac{1}{\rho_0} \frac{\partial P}{\partial y} + \frac{\partial}{\partial z} A_Z \frac{\partial v}{\partial z} + \frac{\partial}{\partial x} A_L \frac{\partial v}{\partial x} + \frac{\partial}{\partial y} A_L \frac{\partial v}{\partial y}; \quad (1.2)$

- уравнение гидростатики

$$\frac{\partial P}{\partial z} = \rho g ; \qquad (1.3)$$

- уравнение неразрывности для несжимаемой жидкости

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0 \quad ; \tag{1.4}$$

- уравнение переноса тепла и соли

$$\frac{\partial(T,S)}{\partial t} + u \frac{\partial(T,S)}{\partial x} + v \frac{\partial(T,S)}{\partial y} + w \frac{\partial(T,S)}{\partial z} =$$
$$= \frac{\partial}{\partial z} \eta \frac{\partial(T,S)}{\partial z} + \frac{\partial}{\partial x} \mu \frac{\partial(T,S)}{\partial x} + \frac{\partial}{\partial y} \mu \frac{\partial(T,S)}{\partial y} ; \qquad (1.5)$$

- уравнение состояния

$$\rho = F(T, S), \tag{1.6}$$

где u, v, w — компоненты вектора скорости течения по осям x, y, z соответственно; f — параметр Кориолиса; P — давление; ρ — плотность воды; T, S — температура и соленость морской воды; A_z, A_L — коэффициенты вертикального и горизонтального турбулентного обмена количеством движения; η, μ — коэффициенты турбулентной диффузии по вертикальной и горизонтальной осям.

Приведенные уравнения записаны применительно к Северному полушарию в правосторонней системе декартовых координат (ось *z* направлена вниз от невозмущенной поверхности).

Примем следующие граничные условия по вертикальной координате.

На поверхности моря $z = \xi(x, y, t)$:

$$\rho_0 A_z \frac{\partial}{\partial z} \frac{u}{z} = -\tau_x; \qquad \rho_0 A_z \frac{\partial}{\partial z} \frac{v}{z} = -\tau_y; \qquad (1.7)$$

$$w = -\left(\frac{\partial}{\partial}\frac{\xi}{t} + u\frac{\partial}{\partial}\frac{\xi}{x} + v\frac{\partial}{\partial}\frac{\xi}{y}\right) ; \qquad (1.8)$$

$$\frac{\partial(T,S)}{\partial z} = Q_{T,S} , \qquad (1.9)$$

где $\tau_{x,y}$ — компоненты вектора тангенциального напряжения трения на поверхности воды; ξ — отклонение поверхности моря от невозмущенного состояния; $Q_{r,s}$ — поток тепла и солей.

На дне z = H(x, y) примем условия равенства нулю вектора скорости:

$$u = v = w = 0 ; (1.10)$$

и отсутствие вертикального потока тепла и солей

$$\frac{\partial(T,S)}{\partial z} = 0$$
 (1.11)

Система уравнений (1.1) – (1.11) замкнута с точностью до определения внутренних (A_Z , A_L , η , μ) и внешних ($\tau_{x,y}$, $Q_{T,S}$) параметров задачи и может быть реализована с использованием вычислительных схем, разработанных для решения задачи о нестационарной циркуляции вод в примитивных уравнениях. Однако реализация такой задачи при высоком пространственном разрешении требует в соответствии с критерием Куранта–Фридрихса–Леви малых временных шагов ($\Delta t \approx 15$ с, при $\Delta t = \Delta x = \Delta y = 13,8$ км) и, следовательно, нереально большого для доступных нам компьютеров типа IBM PC времени вычислений.

Для сокращения времени вычислительного процесса проинтегрируем уравнения (1.1), (1.2) от поверхности до дна, пренебрегая адвективными членами:

$$\frac{\partial \overline{u}}{\partial t} = -g \frac{\partial \xi}{\partial x} - \frac{g}{\rho_0 H} \int_0^H (H - z) \frac{\partial \rho}{\partial x} d + f \overline{v} + \frac{\tau_x - \tau_x^{Bot}}{\rho_0 H} + \frac{\partial}{\partial x} A_L \frac{\partial \overline{u}}{\partial x} + \frac{\partial}{\partial y} A_L \frac{\partial \overline{u}}{\partial y} , \quad (1.12)$$

$$\frac{\partial \overline{v}}{\partial t} = -g \frac{\partial \xi}{\partial y} - \frac{g}{\rho_0 H} \int_0^H (H-z) \frac{\partial \rho}{\partial y} dt - f \overline{u} + \frac{\tau_y - \tau_y^{Bot}}{\rho_0 H} + \frac{\partial}{\partial x} A_L \frac{\partial \overline{v}}{\partial x} + \frac{\partial}{\partial y} A_L \frac{\partial \overline{v}}{\partial y}, \qquad (1.13)$$

где $\bar{u} = \frac{1}{H} \int_{0}^{H} u dz$, $\bar{v} = \frac{1}{H} \int_{0}^{H} v dz$ — функции только переменных *x*, *y*, описывающие баротропную составляющую поля течений в океане.

Уравнение неразрывности после интегрирования имеет вид:

$$\frac{\partial \xi}{\partial t} = -\left(\frac{\partial \overline{u}H}{\partial x} + \frac{\partial \overline{v}H}{\partial y}\right) \cdot \tag{1.14}$$

Уравнения (1.12–1.14) представляют классическую задачу по определению средней скорости течений и уровня моря в рамках теории «мелкой воды». Подобный прием используется в большинстве разработанных к настоящему времени моделей циркуляции океана (например, [10, 14]), поскольку позволяет значительно сократить время вычислений. Достигается это тем, что с малым временным шагом, ограниченным критерием Куранта–Фридрихса–Леви, интегрируется только двумерная задача.

Коэффициент вертикального турбулентного обмена определяется из стационарного уравнения энергии турбулентности в соответствии с [11]. Коэффициент горизонтального турбулентного обмена определяется по формуле Смагоринского, хорошо зарекомендовавшей себя в практике подобных расчетов [12].

В качестве уравнения состояния (1.6) используется формула ЮНЕСКО [7].

2. Модель дрейфа льда

Ледяной покров в модели описывается следующими характеристиками: h – средняя толщина ровного льда, изменяющаяся за счет термического стаивания и нарастания; h_h –толщина торосов (в данной формулировке – величина фиксированная); N_1 – относительная площадь ячейки, занятая льдом толщиной h; N_2 – относительная площадь, занятая торосами; N_0 – относительная площадь чистой воды; h_s – высота снежного покрова на ровном льду.

Предполагается, что N_0 не может быть меньше 0,5 %. Таким образом, следуя [13], параметризируется наличие участков чистой воды,

образовавшихся вследствие стохастических процессов деформации ледяного покрова.

Уравнение эволюции ледяного покрова запишем в виде:

$$\frac{\partial m}{\partial t} + div \left(m\vec{u}_i\right) + f_T = 0 , \qquad (2.1)$$

$$f_T = N_1 \left(\frac{\partial h}{\partial t}\right)_T + h \left(\frac{\partial N}{\partial t}\right)_T + h_h \left(\frac{\partial N_h}{\partial t}\right)_T + N_2 \left(\frac{\partial h_h}{\partial t}\right)_T, \quad (2.2)$$

где масса льда $m = (N_1h + N_2h_h)\rho_i + N_1h_s\rho_s$; $f_T - функция источника или стока, описывающая термодинамический рост или таяние ровного льда, боковое таяние ровного льда и торосов, таяние торосов на верхней и нижней границе.$

В моделях динамики морского льда его дрейф обычно описывается уравнениями баланса импульса. При этом морской ледяной покров рассматривается как двухмерный континуум. Запишем это уравнение, следуя [8], в виде:

$$m \frac{\partial \vec{u}_{i}}{\partial t} = -mf \vec{k} \times \vec{u} + \tau_{a} + \tau_{w} - mg \nabla_{H} \xi + \vec{F} , \qquad (2.3)$$

где $\vec{u}^i = u_i + v_j$ – вектор скорости дрейфа; f – параметр Кориолиса; g – ускорение свободного падения; ξ – уровень моря; τ_a – тангенциальное напряжение ветра на верхней поверхности льда; τ_w – напряжение трения на нижней поверхности льда; \vec{F} – сила внутреннего взаимодействия льда; $\vec{i}, \vec{j}, \vec{k}$ – единичные векторы в x, y, u z направлении соответственно.

Силу внутреннего взаимодействия в ледяном покрове льда запишем в виде:

$$\vec{F} = \nabla \cdot \sigma \quad , \tag{2.4}$$

где σ — тензор напряжений (σ_{ij}), пространственно-временная изменчивость которого описывается в предположении упруго-вязко-пластической реологии ледяного покрова, предложенной в [9]:

$$\frac{1}{E}\frac{\partial\sigma_{ij}}{\partial t} + \frac{1}{2\eta}\sigma_{ij} + \frac{\eta - \zeta}{4\eta\zeta}\sigma_{kk}\delta_{ij} + \frac{P}{4\zeta}\delta_{ij} = \varepsilon_{ij}.$$
(2.5)

В уравнении (2.5) — скорость деформации, определяемая как $\varepsilon_{ij} = 1/2[(du^i_i/dx_j) + (du^i_j/dx_i)]; P$ — напряжение во льду, являющееся функцией сплоченности и толщины льда; E — аналог модуля упругости Юнга; η и ζ — массовая и сдвиговая вязкости, связанные соотношением:

$$\eta = \zeta / e^2 , \qquad (2.6)$$

где *е* – константа и

$$\zeta = 0.5P\left[\left(\varepsilon_{1}^{2} + \varepsilon_{2}^{2}\right)\left(1 + e^{-2}\right) + 4e^{-2}\varepsilon_{2}^{2} + 2\varepsilon_{1}\varepsilon_{2}\left(1 - e^{-2}\right)\right]^{-1/2} \cdot (2.7)$$

Следует отметить, что величина параметра *E* не может быть постоянной, поскольку в модели возникали бы динамические эффекты даже в условиях свободного дрейфа, когда реология льда не должна играть никакой роли. Исследуя условия устойчивости и сходимости системы уравнений динамики льда, Hunke и Dukowicz, [9] предложили следующий вид для этого параметра

$$E = \frac{2E_0\rho_i Nh}{\Delta t^2} \min(\Delta x^2, \Delta y^2) \cdot$$
(2.8)

Введенная в реологическое соотношение такая параметризация *E* допускает развитие упругих волн в ледяном покрове, которые приводят к быстрой подстройке поля скоростей к быстроменяющемуся форсингу. При расчетах мы принимаем $E_0 = 0,25$, e = 2 и $P = P_0 h e^{-C(1-N)}$, где P_0 и *C* являются эмпирическими константами со значениями 27,5 кНм⁻² и 20 соответственно [15].

3. Адаптация и верификация модели

В настоящий момент модель *AARI-IOCM* адаптирована к акватории Северного Ледовитого океана с разрешением 13,8 км. Размер сеточной области 440×395 точек. Донная топография и конфигурация береговой черты получена из архива GEBCO. По вертикали разрешение переменное и составляет 33 расчетных горизонта.

Для расчетов термохалинной составляющей циркуляции вод используются данные по температуре и солености воды из Ocean Atlas (*WOA05*) для летнего и зимнего периодов.

Расходы основных рек СЛО задаются согласно климатическим данным (табл. 1).

Таблица 1

Среднемноголетние величины среднемесячных расходов основных рек (м³/c)

IIX	1379	5377	395	405	6020				27	2975	12	77	349	3638
IX	2178	6330	505	549	7102				81	3534	51	132	481	4725
X	4023	10320	739	807	13944			84	381	14210	246	527	1823	9020
IX	4035	13700	925	899	16951	2107	3063	441	1351	24266	1688	2655	5415	11310
IIIA	3737	22020	966	1007	17344	2486	3755	623	1179	27376	2623	4287	6089	13770
IIV	6914	29790	1721	2704	26938	8239	6980	958	2430	39913	3056	5420	7433	17140
Ŋ	16223	32860	3791	4364	81181	4063	12220	3140	8077	74034	4290	5663	14944	20460
٧	9974	14930	674	884	26502			96	540	6582	471	296	1782	13630
IV	975	3614	226	223	6279				2	1427	0.8	6	181	3488
III	750	3460	229	232	6183				2.5	1722	0.6	13	209	3362
II	896	3935	252	257	6318				4	2234	1	20	221	3609
Ι	1099	4712	298	304	6265				8	2838	3	36	263	3886
Годы	1916-1998	1930-1999	1939–1991	1962-1996	1936-1999	1961-1986	1961-1993	1954-1999	1964-1999	1935-2000	1972-1999	1937-1998	1977-2000	1973-2000
Река	Печора	OGb	Пyp	Ta3	Енисей	Пясина	Хатанга	Анабар	Оленек	Лена	Яна	Индигирка	Колыма	Маккензи

Гармонические постоянные трех основных приливных волн (M_2 , S_2 , K_1) были заранее рассчитаны на всех узлах сетки. Данные на границах расчетной области с Атлантическим и Тихим океанами для расчетов были любезно предоставлены А.Ю. Прошутинским. На рис. 1 в качестве примера представлена котидальная карта приливной волны M_2 , полученная по результатам моделирования. Учет приливной составляющей течения производится следующим образом. Приливная компонента уровня моря рассчитывается в каждой точке сеточной области и прибавляется к уровню, полученному при решении баротропной задачи, перед расчетом трехмерной скорости течения.

Рис. 1. Котидальная карта приливной волны M₂, полученная по результатам моделирования.

При диагностических расчетах для определения тангенциального напряжения на поверхности используются поля приземного атмосферного давления и температура воздуха из NCEP/NCAR Reanalysis, представленные на сетке $2,5 \times 2,5$ ° четыре раза в сутки. Модель тестировалась на воспроизведение дрейфа льда в Северном Ледовитом океане. На рис. 2 представлено сопоставление расчетных и наблюденных траекторий ледовых буев в мае 2010 года, а на рис. 3 — воспроизведение дрейфа станций СП.

Рис. 2. Сопоставление расчетных и наблюденных траекторий ледовых буев в мае 2010 г.

4. Технология оперативного прогноза

В технологии можно выделить ряд крупных технологических звеньев, или составляющих.

В первую очередь, это составляющая «Подготовка и ввод исходных данных». В нее включены процедуры ввода основных параметров расчета, задания массивов идентификаторов, глубин, температуры и солености воды (в зависимости от сезона вводятся летние или зимние поля). Все эти массивы являются постоянными и хранятся на жестком диске компьютера.

Для обеспечения работы модели в оперативном режиме разработан программный модуль усвоения диагностических и прогностических данных сторонних источников.

Источником информации о состоянии ледяного покрова на целевой акватории служит продукция Центра ледовой гидрометеорологической информации (ЦЛГМИ) ААНИИ. Ледовые карты еженедельно поставляются центром в формате Sea Ice Grid (SIGRID-3), который является прикладным расширением формата хранения векторной графической информации Shapefiles. Файлы SIGRID-3 содержат информацию о ледовой обстановке на участках акватории, ограниченных полигонами. Внутри отдельно взятого полигона характеристики состояния ледяного покрова идентичны.

Последовательно перебирая все полигоны Shape-файла, программное обеспечение модуля усвоения входной информации осуществляет преобразование координат вершин полигона, переводя их в декартову систему расчетной области модели, затем к каждому узлу расчетной сетки применяется алгоритм определения принадлежности точки полигону. Каждому узлу сетки, попавшему в границы полигона, присваиваются значения параметров состояния ледяного покрова, характеризующие полигон. В оперативном режиме работы информация о ледовой обстановке обрабатывается в соответствии с временным регламентом деятельности ЦЛГМИ, данные в формате SIGRID-3 усваиваются моделью после каждого обновления, выпускаемого центром.

Доступ к файлам SIGRID-3 осуществляется посредством обращений к файловой системе сервера поставщика данных ЕСИМО по абсолютным путям, формируемым с соблюдением соглашений об именовании каталогов и файлов.

В качестве входной метеорологической информации используются прогнозы полей приземного давления, выпускаемые Европейским центром среднесрочных прогнозов погоды (The European Centre for Medium-Range Weather Forecasts, ECMWF), поступающие по каналам службы автоматизированного сбора и передачи данных (АСПД) в формате GRIB (Grid in Binary). Файлы GRIB архивируются на сервере с соблюдением структуры каталогов, позволяющей однозначно идентифицировать дату выпуска прогноза.

Перед запуском процедуры модельного расчета модуль преобразования обращается в файловое хранилище сервера по абсолютному пути, сформированному на основе значений даты и времени производства прогноза с учетом принятых соглашений об именовании папок. Из локализованного GRIB-файла, с использованием программного интерфейса формата GRIB, извлекаются диагностическое поле приземного давления, а также прогностические поля суточной дискретности. Поскольку прогнозы ECMWF поставляются на географической сетке раздельно по девяностоградусным долготным секторам полушарий, программный алгоритм модуля предусматривает выполнение операции объединения четырех секторов Северного полушария с целью обеспечить покрытие акватории Северного Ледовитого океана. Образованные в результате слияния сеточные области для каждого прогностического срока выгружаются в файлы формата ASCII, которые считываются программой последовательно по мере выполнения расчета для вычисления атмосферного форсинга.

Основным блоком технологии является «Расчет параметров циркуляции вод и льдов СЛО» по модели *AARI-IOCM*. Первым шагом в этом блоке служит процедура задания режима расчетов. Сама численная схема расчета практически не зависит от выбранного режима. Разница состоит только в формировании для вывода результатов расчетов. Всего предусмотрено три режима вывода результатов.

Первый — векторные поля скоростей дрейфа льда на заданные моменты времени. При этом можно задавать для вывода не всю акваторию СЛО, а любой прямоугольный ее фрагмент. Кроме того, для улучшения восприятия предусмотрен ввод дискрета, через который будут выводиться вектора скорости дрейфа, по умолчанию в каждом узле через 13,8 км. На рис. 4 приведен пример вывода векторного поля в северной части моря Лаптевых.

Второй — набор последовательностей точек положения выбранных льдин. Примеры такого вывода представлены на рис 2, 3 и 5.

Третий — комбинированный, включающий и векторные поля, и траектории выбранных льдин.

Кроме того, предусмотрено хранение результатов расчетов в числовом формате для возможности дальнейшей обработки.

Рис. 4. Пример вывода векторного поля в северной части моря Лаптевых.

5. Результаты оперативных расчетов дрейфа льда

Для проведения испытаний технологии расчета и краткосрочного прогноза дрейфа льда на акватории Северного Ледовитого океана и арктических морей были использованы данные о дрейфе буев в сентябре 2014 года.

На рис. 5 представлены траектории буев и их воспроизведение моделью за весь месяц.

Количественная оценка результатов производилась по перемещениям буев за период прогноза. Такой способ достаточно нагляден и позволяет оперировать скалярными величинами, а не векторами. Согласно Наставлению [6], оправдавшимся прогнозом будем считать только такой, ошибка которого меньше некой допустимой ошибки, а в качестве допустимой ошибки используем 20 % амплитуды изменения величины за период заблаговременности прогноза. Статистическая обработка результатов наблюдений показала, что наибольшие перемещения совершил буй 47502. Пройденные за различные периоды максимальные расстояния и соответствующие им допустимые ошибки приведены в табл. 2.

Рис. 5. Траектории буев и их воспроизведение моделью за весь месяц.

Таблица 2

Максимальные перемещения,	совершенные	буями в	сентябре	2014 г.,
и соответствующи	ие им допусти	мые оши	бки	

Период, сутки	Максимальное перемещение, км	Допустимая ошибка, км
1	38,2	7,6
2	70,3	14,1
3	104,7	21

В табл. 3—5 приведены данные о средних и максимальных ошибках расчета дрейфа льда в зависимости от продолжительности дрейфа: за одни, двое и трое суток. Обобщая эти данные, можно сказать, что средняя и максимальные ошибки расчета дрейфа льда в значительной степени зависят от продолжительности дрейфа. Так, средняя ошибка, осредненная по всем буям, составила 5,8 км при продолжительности дрейфа одни сутки, 9,5 км — двое суток и 12,9 км при продолжительности дрейфа трое суток. Максимальная ошибка, в свою очередь, составила 38,4, 40,9 и 48,3 км соответственно.

Таблица З

№ буя	Средняя ошибка, км	Максимальная ошибка, км	Оправдываемость, %
25615	5,7	15,2	75,9
25616	5,9	13,0	75,9
25619	5,2	12,8	79,3
25624	5,2	35,0	86,2
25648	5,4	34,4	86,2
25652	6,1	24,3	75,9
26537	4,9	33,1	93,1
26538	6,3	38,4	75,9
47502	7,4	19,1	55,2
47508	6,0	20,9	72,4
48507	6,3	18,4	72,4
48508	4,0	10,1	89,7
48509	5,3	27,2	93,1
48510	5,8	22,4	79,3
48558	8,2	22,1	58,6
48559	7,7	16,0	58,6
48560	6,3	14,7	58,6
48568	6,5	24,4	72,4
48597	5,3	24,5	82,8
48598	4,6	15,0	86,2
48600	6,5	21,0	69,0
48731	4,0	11,6	89,7
48733	5,4	13,9	82,8
63545	6,2	26,8	79,3
63546	5,8	25,1	79,3

Оценка качества расчетов перемещения буев за одни сутки

Таблица 4

Оценка качества	расчетов п	еремешения (буев за	а двое с	VTOK
	P				/

№ буя	Средняя ошибка, км	Максимальная ошибка, км	Оправдываемость, %
25615	9,4	20,7	82,1
25616	10,5	23,1	75,0
25619	9,1	20,5	85,7
25624	7,3	23,7	85,7
25648	7,4	29,6	89,3
25652	9,7	25,9	78,6
26537	6,5	17,8	92,9
26538	8,2	24,4	89,3
47502	11,5	34,5	71,4
47508	10,3	29,6	75,0
48507	10,1	20,1	82,1
48508	7,1	19,7	89,3
48509	7,2	13,8	100,0
48510	9,7	20,8	78,6
48558	15,0	40,9	46,4
48559	15,2	25,7	46,4
48560	11,8	26,8	67,9
48568	11,0	27,9	75,0
48597	9,2	22,7	78,6
48598	6,7	20,5	89,3
48600	9,9	22,9	82,1
48731	6,1	16,3	92,9
48733	9,1	21,5	85,7
63545	10,1	25,0	82,1
63546	9,6	29,5	78,6

При использовании для оценки качества расчетов понятие оправдываемости при допустимых ошибках, приведенных в табл. 2, зависимости от продолжительности дрейфа не отмечается. Средняя для всех буев оправдываемость при продолжительности дрейфа одни сутки составила 77 %, двое суток — 80 % и трое суток — 84 %. Очевидно, что это связано со значительным увеличением допустимой ошибки при увеличении продолжительности дрейфа.

Таблица 5

№ буя	Средняя ошибка, км	Макс. ошибка, км	Оправдываемость, %
25615	13,2	25,1	88,9
25616	14,3	26,3	85,2
25619	12,9	25,7	88,9
25624	9,3	28,2	96,3
25648	9,5	37,0	92,6
25652	13,4	37,2	81,5
26537	8,3	19,1	100,0
26538	9,4	27,3	92,6
47502	14,9	41,1	66,7
47508	13,8	36,9	81,5
48507	14,2	26,7	88,9
48508	9,8	26,2	92,6
48509	9,5	17,8	100,0
48510	13,9	26,0	85,2
48558	19,6	48,3	66,7
48559	22,1	40,3	48,1
48560	16,8	33,6	63,0
48568	15,3	38,1	74,1
48597	12,6	27,5	81,5
48598	9,0	24,6	88,9
48600	13,6	29,6	88,9
48731	8,3	23,0	96,3
48733	12,3	25,1	85,2
63545	13,6	28,9	88,9
63546	12,8	30,8	92,6

Оценка качества расчетов перемещения буев за трое суток

Заключение

Предложенная технология расчета и краткосрочного прогноза дрейфа льда на акватории Северного Ледовитого океана и арктических морей и результаты ее испытания были доложены ЦМКП Росгидромета 03.12.2015 г. ЦМКП Росгидромета рекомендовала внедрить метод в качестве основного для использования в ФГБУ «ААНИИ» (утвержденное решение Центральной методической комиссии по гидрометеорологическим и гелиогеофизическим прогнозам № 140-08445/15и от 15 декабря 2015 г.). Данные прогнозы будут использоваться для оперативного обеспечения судоходства и решения прочих задач на акватории Северного Ледовитого океана и арктических морей России.

Список литературы

1. *Кулаков М.Ю., Макштас А.П., Шутилин С.В.* ААRI–IOCM – совместная модель циркуляции вод и льдов Северного Ледовитого океана // Проблемы Арктики и Антарктики. – 2012. – № 2 (92). – С. 6–18.

2. *Кулаков М.Ю., Макштас А.П., Шутилин С.В.* Модельные оценки чувствительности ледяного покрова Северного Ледовитого океана к изменениям форсингов // Проблемы Арктики и Антарктики. – 2012. – № 3 (93). – С. 66–74.

3. *Кулаков М.Ю., Макштас А.П.* Роль дрейфа льда в формировании ледяного покрова Северного Ледовитого океана в начале XXI века. – 2013. – № 2 (96). – С. 67–75.

4. *Кулаков М.Ю., Демчев Д.М.* Моделирование дрейфа айсбергов как часть ледового мониторинга в западной Арктике // Метеорология и гидрология (в печати).

5. Миронов Е.У., Смирнов В.Г., Бычкова И.А., Кулаков М.Ю., Демчев Д.М. Новые технологии обнаружения айсбергов и прогнозирования их дрейфа в западном секторе Арктики // Проблемы Арктики и Антарктики. — 2015. — № 2 (104). — С. 21–32.

6. Наставление по службе прогнозов. Раздел 2. Часть III. Служба морских гидрологических прогнозов. – М.: Триада ЛТД, 2011. – 201 с.

7. *Fofonoff N.P., Millard Jr R.C.* Algorithms for computation of fundamental properties of seawater // Unesco Tech. Pap. – 1983. – No. 44. – 53 p.

8. *Hibler W.D.* A Dynamic/Thermodynamic Sea Ice Model // J. Phys. Oceanogr. - 1979. - No. 9. - P. 815-846.

9. *Hunke E.C., Dukowicz J.K.* An Elastic–Viscous–Plastic Model for Sea Ice Dynamics // J. Phys. Oceanogr. – 1997. – № 27. – P. 1849–1867.

10. *Killworth P.D., Stainforth D., Weeb D.J., Paterson S.M.* The Development of a Free–Surface Bryan–Cox–Semtner Ocean Model // J. Phys. Ocean. – 1991. – No. 21. – P. 1333–1348.

11. *Kochergin V.P.* Three–dimensional prognostic models // Three-Dimensional Coastal Ocean Models / ed. N. S. Heaps, Coastal Estuarine Science Series, Amer. Geophys. Union. – 1987. – No. 4. – P. 201–208.

12. Oey L.-Y., Mellor G.L., Hires R.I. A three-dimensional simulation of the Hudson-Raritan Estuary. Part I: Description of the model and model simulation // J. Phys. Oceanogr. - 1985. - Vol. 15, No. 12. - P. 1676-1692.

13. *Parkinson C.L., Washington W.M.* A large scale numerical model of sea ice // J. Geophys. Res. – 1979. – Vol. 84. – P. 311–337.

14. *Song Y., Haidvogel D.* A semi–implicit ocean circulation model using a generalized topography–following coordinate system // J. Comp. Physics. – 1994. – Vol. 115. – P. 228–244.

15. *Zhang, J., W.D. Hibler III.* On an efficient numerical method for modeling sea ice dynamics // J. Geophys. Res. – 1997. – Vol. 102. – P. 8691–8702.