И.О. Думанская

МЕТОД ДОЛГОСРОЧНОГО ПРОГНОЗА ЛЕДОВЫХ УСЛОВИЙ В БАРЕНЦЕВОМ МОРЕ, ФИНСКОМ ЗАЛИВЕ И В СЕВЕРНОЙ ЧАСТИ КАСПИЙСКОГО МОРЯ, ОСНОВАННЫЙ НА ИСПОЛЬЗОВАНИИ СТАТИСТИЧЕСКОГО МОДЕЛИРОВАНИЯ

В соответствии с Планом испытания и внедрения новых и усовершенствованных методов (технологий) гидрометеорологических прогнозов на 2014 год в ФГБУ «Гидрометцентр России» были проведены оперативные испытания нового метода долгосрочного прогноза ледовых условий. В качестве зависимых рядов для получения расчетных уравнений использовались наиболее полные ряды наблюдений за ледовыми характеристиками с начала организации наблюдений (различного для разных ледовых характеристик: от 50 до 120 лет) до ледового сезона 2004/2005 гг. В качестве независимого ряда, принятого к испытаниям, использовались данные девяти ледовых сезонов: с 2005/2006 по 2013/2014 гг.

Введение

В морском отделе ФГБУ «Гидрометцентр России» составляется долгосрочный прогноз ледовых условий на российских морях на предстоящую зиму. Прогнозируется ряд характеристик по пунктам неарктических морей (в том числе Баренцева, Балтийского, Каспийского): сумма градусодней мороза (СГДМ); первое появление льда (ПП); максимальная за ледовый сезон средняя месячная ледовитость моря (МЛ); максимальная за ледовый сезон толщина припайного льда (МТ); дата окончательного очищения моря ото льда (ОО); продолжительность ледового периода (ЛП). Долгосрочный прогноз ледовых характеристик ежегодно в начале октября публикуется в бюллетене «Долгосрочный прогноз ледовых условий на неарктических морях на предстоящий ледовый сезон», который рассылается пользователям.

В связи с выполнением задачи по совершенствованию методической базы для прогнозирования ледовых характеристик, в лаборатории ледовых прогнозов в течение нескольких последних лет разрабатывается новая комплексная методика долгосрочного прогнозирования для неарктических морей европейской части России. Далее планируется распространение единого методического подхода и на восточные моря.

Использованные данные

Информационной основой испытываемого метода долгосрочного прогноза ледовых условий на неарктических морях являются данные электронного архива метеорологической и ледовой информации, формируемого в лаборатории ледовых прогнозов ФГБУ «Гидрометцентр России».

При разработке метода прогноза использовались:

 – данные наблюдений за среднемесячной температурой воздуха у поверхности Земли на морских гидрометеорологических станциях неарктических морей, по которым рассчитывалась сумма градусодней мороза (СГДМ); информация о рядах наблюдений приведена в табл. 1;

 – данные наблюдений за среднемесячной температурой воздуха у поверхности Земли на метеорологических станциях, характеризующей термическое состояние воздушных масс: причерноморской (Ростовна-Дону), беломорской (Архангельск), евроатлантической (Санкт-Петербург), сибирской (Иркутск);

 данные наблюдений за приземным давлением в пунктах, расположенных в районах центров действия атмосферы (ЦДА): сибирского максимума (Иркутск), исландского минимума (Рейкьявик) и азорского максимума (Понта-Делгада);

 таблицы дат наступления ледовых фаз, продолжительности ледовых периодов и толщин припайного льда, составленные по данным наблюдений морских ГМС; информация о рядах наблюдений приведена в табл. 1;

 таблицы ледовитости неарктических морей; информация о рядах наблюдений приведена в табл. 1.

Ряды наблюдений за метеорологическими и ледовыми характеристиками,
использованные при разработке метода прогноза,
и информация о пропуске данных в них

Море	Район моря или пункт наблюдений	Характе- ристика	Период наблюде- ний, годы	Число лет наблюде- ний	Пропуски данных, %
Баренцево	Нарьян-Мар	СГДМ	1928-2014	87	0
	Domostravi (III.om)	ЛФ	1941-2014	74	4
	варандеи (шар)	ТЛ	1965-2014	50	25
	Все море	Л	1907-2014	108	14
	Юго-восточная часть	Л	1928-2014	87	0
Балтийское	Санкт- Петербург	СГДМ	1806-2014	209	0
	Vaar	ЛФ	1895-2014	120	0
	кронштадт	ТЛ	1911-2014	104	22
	Финский залив	Л	1951-2014	64	0
Каспийское	Астрахань	СГДМ	1895-2014	120	0
	о. Большой	ЛФ	1930-2014	85	20
	Пешной	ТЛ	1930-2014	85	24
	о. Искусствен-	ЛФ	1942-2014	73	19
	ный – Лагань	ТЛ	1953-2014	62	15
	Северный Каспий	Л	1928-2014	87	0

Примечание. СГДМ – сумма градусодней мороза, ЛФ – ледовые фазы, ТЛ – толщина припайного льда, Л – ледовитость.

Длина рядов данных о параметрах центров действия атмосферы и термическом состоянии воздушных масс составляет 120 лет.

В рядах метеорологических и ледовых характеристик для Баренцева моря, Финского залива, северной части Каспийского моря, информация о которых приводится в табл. 1, имеются пропуски. Причиной пропусков информации является либо отсутствие наблюдений в отдельные годы, либо непоступление информации в ФГБУ «Гидрометцентр России» по каналам связи. При разработке метода принимались во внимание только те ряды, для которых количество пропусков не превышает 25 % ряда.

Технология долгосрочного прогноза

Основными в области долгосрочных ледовых прогнозов являются физико-статистические методы, опирающиеся на предположение о преемственности и цикличности процессов, происходящих в природе [1, 2]. Ледовые процессы на всех морях связаны со спецификой макроциркуляционных атмосферных процессов [3], которые, в свою очередь, зависят от состояния центров действия атмосферы в месяцы, предшествующие ледовому сезону [4, 6, 8].

В основу методики прогноза заложено предположение о том, что на будущую суровость зимы и значения ледовых характеристик в любом порту европейской части России влияют состояние, интенсивность и взаимодействие крупных термобарических атмосферных структур, положение пункта прогноза относительно центров этих структур, наличие накладывающихся друг на друга циклов, определяемых внешним (космическим) воздействием.

Общие принципы технологии долгосрочного прогноза для неарктических морей подробно изложены в ряде источников [5, 9–12]. Технология прогноза представляет собой ансамблевый метод, включающий три компонента для расчета ледовых параметров.

1. Расчет по уравнениям множественной корреляции на основе использования поля приземной температуры воздуха над евроатлантическим сектором.

2. Расчет по уравнениям множественной корреляции на основе использования характеристик поля приземного давления над евроатлантическим сектором.

3. Разложение кривых хода межгодовой изменчивости ледовых параметров на гармонические составляющие с последующей экстраполяцией их сумм на предстоящий ледовый сезон.

В окончательном прогнозе ледовых характеристик учитывается вклад каждого из трех компонентов. При этом величина этого вклада в общий результат пропорциональна обеспеченности расчета в рамках каждого компонента. При разработке метода прогноза непосредственно для Баренцева моря, Финского залива и Северной части Каспийского моря исследовалась связь характеристик ледового режима этих морей с параметрами атмосферных процессов: — среднемесячными значениями приземной температуры воздуха, характеризующими сибирскую, причерноморскую, североатлантическую и беломорскую воздушные массы, и разностями этой температуры на фиксированных створах ΔT_1 и ΔT_2 (см. табл. 2);

— среднемесячными значениями приземного давления в центрах действия атмосферы и разностями этих значений на фиксированных створах ΔP_1 и ΔP_2 (см. табл. 2).

Корреляционный анализ осуществлялся по данным девяти месяцев, предшествующих ледовому сезону (с января по сентябрь включительно) [7]. Ограничение набора предикторов данными за сентябрь было определено тем, что результаты прогноза предоставляются потребителям ледовой информации уже в начале октября. По результатам анализа были выбраны наиболее значимые предикторы, которые и вошли в окончательные уравнения.

Для морей Европейской территории России (ЕТР) выбран единый набор предикторов (45 характеристик поля температуры и 38 характеристик поля давления). Уравнения для всех пунктов имеют аналогичный вид, отличаясь весовыми коэффициентами. Число весовых коэффициентов, отличных от нуля, в каждом уравнении не превышает 20 % ряда рассчитываемой ледовой характеристики. Линейное корреляционное уравнение имеет традиционный вид:

$$y = A_{i}(B_{1}x_{1} + B_{2}x_{2} + \dots + B_{n}x_{n}) + C_{i},$$
(1)

где B_1 , B_2 , B_n — весовые коэффициенты; A_i и C_i — коэффициенты в линейном уравнении для i-го элемента ледового режима (сумма градусодней мороза (СГДМ), дата начала ледообразования, максимальная за ледовый сезон ледовитость моря, максимальная за ледовый сезон толщина льда, дата очищения моря ото льда).

В табл. 2 приведены предикторы (*x*) для расчета ледовых характеристик по полю приземной температуры и по полю приземного давления, а также представлен большой набор предикторов (*x*), работающих в уравнениях для всей линейки ледовых характеристик. Предиктор может иметь отдельные нулевые весовые коэффициенты в уравнениях расчета одной из ледовых характеристик, но быть достаточно влиятельным в уравнениях для других характеристик ледового режима.

Предикторы (x), характеризующие поле приземной температуры (ППТ) и поле приземного давления (ППД)

Объект ППТ	х для ППТ	Объект ППД	х для ППД
Причерноморская	$T_p(I)$	Исландский	Pu(I)
воздушная масса	$T_p(III)$	минимум	Pu(II)
	$T_{p}(IV)$		Ри(III)
	$T_{p}(V)$		Ри(IV)
	$T_{p}(VI)$		Ри(V)
	T _p (VII)		Ри(VI)
	T _p (VIII)		Ри(VII)
	$T_{p}(IX)$		Ри(VIII)
			Pu(IX)
Беломорская	$T_{A}(I)$	Сибирский	Pc(I)
воздушная масса	$T_{A}(II)$	максимум	Pc(II)
	T _A (III)		Pc(III)
	T _A (IV)		Pc(IV)
	$T_A(V)$		Pc(V)
	T _A (VI)		Pc(VI)
	T _A (VII)		Pc(VII)
	T _A (VIII)		Pc(VIII)
	T _A (IX)		Pc(IX)
Евроатлантическая	$T_{CII6}(II)$	Азорский	Pa(I)
воздушная масса	$T_{CII6}(V)$	максимум	Pa(II)
	T _{спб} (VI)		Pa(III)
	T _{спб} (VII)		Pa(IV)
	T _{спб} (VIII)		Pa(VI)
	T _{спб} (IX)		Pa(VII)
			Pa(VIII)
			Pa(IX)
Сибирская	$T_{\mu\rho}(I)$	Меридиональный	$\Delta P_{I}(I)$
воздушная масса	$T_{\mu_p}(II)$	градиент давления	$\Delta P_{I}(V)$
	$T_{\mu p}(III)$		$\Delta P_{I}(VII)$
	Т _{ир} (IV)		$\Delta P_1(IX)$
	$T_{\mu n}(V)$		

в уравнениях расчета ледовых характеристик для морей ЕТР

Объект ППТ	х для ППТ	Объект ППД	х для ППД
Сибирская	T _{Mp} (VI)	Меридиональный	
воздушная масса	T _{Mp} (VII)	градиент давления	
	T _{Mn} (VIII)		
	T _{Mp} (IX)		
Меридиональный	$\Delta T_{I}(I)$	Зональный	$\Delta P_2(I)$
градиент	$\Delta T_{I}(II)$	перенос	$\Delta P_2(II)$
температуры	$\Delta T_{I}(III)$		$\Delta P_{2}(III)$
	$\Delta T_1(IV)$		$\Delta P_{2}(IV)$
	$\Delta T_1(V)$		$\Delta P_{2}(VI)$
	ΔT_1 (VII)		$\Delta P_{2}(VII)$
	ΔT_1 (VIII)		$\Delta P_2(VIII)$
Зональный	$\Delta T_2(I)$		$\Delta P_2(IX)$
градиент	$\Delta T_2(III)$		
температуры	$\Delta T_2(VI)$		
	$\Delta T_{2}(VII)$		
	ΔT_2 (VIII)]	
	$\Delta T_{2}(IX)$		

Примечание. Предикторы – среднемесячная приземная температура воздуха в пункте, характеризующем теплозапас воздушной массы: T_p – в Ростовена-Дону, T_A – в Архангельске, $T_{CП6}$ – в Санкт-Петербурге, T_{Hp} – в Иркутске; $\Delta T_1 = T_A - T_{CП6}$; $\Delta T_2 = T_{Hp} - (T_A + T_{CП6})/2$; приземное давление в районе соответствующего центра действия атмосферы: Ри – в Рейкьявике, Рс – в Иркутске, Ра – в Понта-Делгада; $\Delta P_1 = Pa - Pu$; $\Delta P_2 = Pc - (Pa + Pu)/2$; римской цифрой обозначен месяц.

Для третьего компонента прогноза периоды циклов для гармоник определялись по ряду приземной температуры воздуха в Санкт-Петербурге, для которого имеется наибольшее число наблюдений. Разложению подвергался 200-летний ряд отклонений СГДМ от генерального тренда. При этом генеральный тренд также описывался длиннопериодной гармоникой, наиболее близко соответствующей полиномиальному тренду 2-го порядка.

На рис. 1 показано положение гармоники № 1 (генеральный тренд) и полиномиального тренда 2-го порядка для ряда СГДМ по Санкт-Петербургу, на рис. 2 — положение той же гармоники на оси времени, длина которой составляет 5 тыс. лет.

Рис. 2. Положение гармоники № 1 (генеральный тренд) для ряда СГДМ по Санкт-Петербургу на оси времени до 5000 г. н. э.

Проверим, как согласуются данные этой гармоники с палеоклиматическими представлениями. Анализ рис. 2 показывает, что предпоследнее значительное повышение температуры (которому соответствуют минимальные значения СГДМ) относится к IX–XIII вв. н. э. (малый климатический оптимум). Видно, что в соответствии с рис. 2 в XIV в. началось похолодание, известное как «малый ледниковый период», продолжавшийся до начала XIX века, далее началось постепенное повышение температуры воздуха (уменьшение СГДМ), продолжающееся и теперь (и находящееся в соответствии с рис. 2 на половине пути к следующему экстремальному значению очередного климатического оптимума). Таким образом, чисто теоретически найденная гармоника подтверждает известные палеоклиматические представления, что служит доказательством ее реального существования.

На рис. 3 показано положение гармоники № 2 и полиномиального тренда 4-го порядка для отклонения СГДМ по Санкт-Петербургу от генерального тренда. На рис. 4 показано положение гармоники № 3 и полиномиального тренда 6-го порядка для отклонения СГДМ по Санкт-Петербургу от генерального тренда.

Численные эксперименты показали, что для первых трех визуально определяемых гармоник существуют общие узловые годы,

повторяющиеся в периоде, равном $\Delta T = 5044$. Остальные гармоник были найдены по существенным всплескам коэффициентов корреляции между фактическими отклонениями от генерального тренда и синусоидами с периодами (Δt), полученными путем последовательного деления величины глобального периода, равной 5044 годам, на целые числа от 2 до 2500 [11, 12]. В табл. 3 приведены параметры для 31 гармоники, сумма которых аппроксимирует СГДМ в Санкт-Петербурге, а также коэффициенты корреляции (r).

Таблица З

№ гармоники	$\Delta t,$ годы	r	№ гармоники	$\Delta t,$ годы	r		
1	1000 00	0.40	16	5,30	0,13		
(ген. тренд)	1008,80	0,40	17	5,05	0,16		
2	173,93	0,07	18	4,92	0,14		
3	84,07	0,12	19	4,66	0,10		
4	25,47	0,10	20	4,37	0,13		
5	21,74	0,18	21	4,23	0,10		
6	18,14	0,10	22	3,94	0,18		
7	13,56	0,10	23	3,38	0,13		
8	12,67	0,11	24	3,08	0,17		
9	11,21	0,14	25	2,83	0,14		
10	9,78	0,17	26	2,69	0,10		
11	9,27	0,18	27	2,59	0,12		
12	7,84	0,20	28	2,40	0,17		
13	7,57	0,05	29	2,34	0,12		
14	6,48	0,07	30	2,26	0,24		
15	5,65	0,10	31	2,03	0,18		
Суммарный коэффициент корреляции r							

Периоды гармоник (Δt) и коэффициенты корреляции (r) для гармоник

В третьем компоненте методики долгосрочного прогноза суммы найденных гармоник аппроксимируют значения СГДМ и ледовых

характеристик Баренцева, Балтийского, Каспийского морей. Коэффициенты корреляции между рядами значений, рассчитанных по суммам гармоник, и соответствующими рядами фактических значений для разных ледовых характеристик и пунктов варьируют от 0,6 до 0,8.

Обращает на себя внимание близость периодов отдельных найденных гармоник с периодами колебания гравитационных воздействий (орбитальных периодов) Юпитера, Сатурна, Урана, Нептуна, а также с основными циклами солнечной активности, что вряд ли может быть случайностью. В табл. 4 приведены числовые характеристики, характеризующие это соответствие.

Таблица 4

Влияние планет	Планетарный цикл, лет	Номер гармоники и ее период, лет
Нептун	Орбитальный период = 164,79	№ 2 = 173,93
Уран	Орбитальный период = 84,01	№ 3 = 84,07
Сатурн	Орбитальный период = 29,46	№ 4 = 25,47
Сатурн и Юпитер	Цикл соединения = 20,00	№ 6 = 18,14
Солнце	Цикл солнечной активности =22,00	№ 5 = 21,74
Солнце	Цикл солнечной активности = 11,00	№ 9 = 11,21
Солнце	Цикл солнечной активности = 4,60	№ 19 = 4,66
Юпитер и Марс	Цикл соединения = 2,20	№ 30 = 2,26

Соответствие периодов гармоник с периодами колебаний гравитационных воздействий планет и солнечной активности на природные процессы Земли

На рис. 5 и 6 для примера представлены результаты расчета некоторых ледовых характеристик.

Расчеты ледовых характеристик по зависимому и независимому рядам дали удовлетворительные результаты. Средняя эффективность метода по зависимому ряду по всем элементам ледового режима и пунктам составила 22 %. В табл. 5–7 приведены ежегодные результаты расчетов по независимому ряду.

Результаты расчета ледовых характеристик по независимому ряду для юго-восточной части Баренцева моря

Характери- стика	2005/2006	2006/2007	2007/2008	2008/2009	2009/2010	2010/2011	2011/2012	2012/2013	2013/2014	ОБ метода, %	ОБ клима- тическая, %
СГДМ	+	+	+	+	+	+	_	+	+	89	67
МЛ	+	+	+	+	+	+	_	+	_	78	78
ПЛ	+	+	+	+	+	+	+	+	+	100	67
ОЛ	+	+	+	+	+	+	+	+	+	100	67
ЛП	+	+	+	+	+	+	+	+	_	89	56
Н	+	+	+	+	+	+	+	+	+	100	67
Средняя эффективность, %								2	6		

Примечание. Здесь, а также в табл. 6, 7: «+» – прогноз оправдался, «–» – прогноз не оправдался, ОБ – обеспеченность.

Таблица б

по незивненному ряду для северной части настинского моря											
Характери- стика	2005/2006	2006/2007	2007/2008	2008/2009	2009/2010	2010/2011	2011/2012	2012/2013	2013/2014	ОБ метода, %	ОБ клима- тическая, %
СГДМ	+	+	+	+	+	+	_	+	+	89	78
МЛ	+	_	+	+	+	+	_	+	_	78	78
ПЛ	+	+	+	+	+	+	+	+	+	100	56
ОЛ	+	+	+	+	+	+	+	+	+	100	100
ЛП	+	+	+	+	+	+	+	+	_	100	78
Н	+	+	+	+	+	+	+	+	+	100	44
Средняя эффективность, %								2	2		

Результаты расчета ледовых характеристик по независимому ряду для северной части Каспийского моря

Результаты расчета ледовых характеристик по независимому ряду для Финского залива

Характери- стика	2005/2006	2006/2007	2007/2008	2008/2009	2009/2010	2010/2011	2011/2012	2012/2013	2013/2014	ОБ метода, %	ОБ климати- ческая, %
СГДМ	+	+	+	+	+	+	+	+	+	100	56
МЛ	+	+	-	+	+	+	+	+	_	89	78
ПЛ	+	_	_	+	+	+	-	+	+	67	33
ОЛ	+	+	+	+	+	+	+	+	_	89	67
ЛП	+	+	_	+	+	+	_	+	_	67	44
Н	+	+	+	+	+	+	+	_	_	78	67
Средняя эффективность, %								2	4		

Заключение

Таким образом, расчет ледовых характеристик ансамблевым методом для ряда пунктов неарктических морей по зависимому и независимому рядам дал удовлетворительный результат.

1. Средняя для всех пунктов эффективность метода по зависимым рядам составляет для элементов ледового режима:

	-
- СГДМ	 — 20 % при обеспеченности 92 %;
— МЛ	 — 19 % при обеспеченности 90 %;
$-\Pi\Pi$	 — 23 % при обеспеченности 89 %;
-00	 — 25 % при обеспеченности 96 %;
— ЛП	 — 24 % при обеспеченности 92 %;
-MT	— 24 % при обеспеченности 95 %.

2. Средняя для всех пунктов эффективность метода по независимым рядам составляет 24 %.

ЦМКП от 4 декабря 2014 г. одобрила результаты испытаний метода и рекомендовала Φ ГБУ «Гидрометцентр России» включить данный метод в практику составления ледовых прогнозов в качестве основного метода. 1. *Абузяров З.К, Думанская И.О., Нестеров Е.С.* Оперативное океанографическое обслуживание. – Обнинск: «ИГ–СОЦИН», 2009. – 286 с.

2. Абузяров З.К., Кудрявая К.И., Серяков Е.И., Скриптунова Л.И. Морские прогнозы. – Л.: Гидрометеоиздат, 1988. – 320 с.

3. *Гудкович З.М., Кириллов А.А., Ковалев Е.Г. и др.* Основы методики долгосрочных ледовых прогнозов для арктических морей. – Л.: Гидрометеоиздат, 1972. – 348 с.

4. Думанская И.О. Зависимость ледовитости Белого моря от макроциркуляционных атмосферных процессов // Труды Гидрометцентра России. – 2004. – Вып. 339. – С. 55–63.

5. Думанская И.О. Методика долгосрочного прогноза ледовых условий на европейских морях России // Метеоспектр. – 2009. – № 4. – С. 88–96.

6. Думанская И.О. Оценка возможности использования вероятностных характеристик дрейфующего льда и численной модели перераспределения льда в Белом море для гидрометеорологического обеспечения морских транспортных операций в условиях климатических изменений // Проблемы Арктики и Антарктики. – 2007. – № 77. – С. 128–142.

7. Думанская И.О., Котилевская А.М. Оценка возможности использования в современной практике ледового обслуживания мореплавания прогностических методик XX века на неарктических морях России // Труды Гидрометцентра России. – 2009. – Вып. 343. – С. 67–88.

8. Думанская И.О. Анализ влияния центров действия атмосферы на характер зим на морях европейской части России // Труды Гидрометцентра России. – 2011. – Вып. 345. – С.56-82.

9. Думанская И.О. Метод долгосрочного прогноза ледовых условий на Белом и Азовском морях // Труды Гидрометцентра России. – 2011. – Вып. 345. – С. 83–104.

10. Думанская И.О. О методике долгосрочного прогноза ледовых условий на европейских морях России // Метеорология и гидрология. – 2011. – № 11. – С. 64–76.

11. Думанская И.О. Метод долгосрочного прогноза ледовых условий на Белом и Азовском морях, основанный на использовании статистического моделирования // Информационный сборник Гидрометцентра России. – 2013. – № 40. – С. 41–63.

12. Думанская И.О. Ледовые условия морей европейской части России. – М.: ИГ-СОЦИН, 2014. – 605 с.