РЕЗУЛЬТАТЫ ИСПЫТАНИЯ МЕТОДОВ ПРОГНОЗА УРОЖАЙНОСТИ ЗЕРНОВЫХ И ЗЕРНОБОБОВЫХ КУЛЬТУР ПО НОВОСИБИРСКОЙ ОБЛАСТИ И АЛТАЙСКОМУ КРАЮ

Методы прогноза урожайности зерновых и зернобобовых культур по административным районам Новосибирской области разработаны в рамках выполнения темы 1.8.2 Плана НИОКР Росгидромета на 2008—2010 гг. (автор — Т.В. Старостина, ФГБУ «СибНИГМИ»), по Алтайскому краю — в рамках выполнения региональной темы 8.143 Плана НИОКР Росгидромета на 2010 г. (авторы — Т.В. Старостина, ФГБУ «СибНИГМИ»; Е.И. Янова, ФГБУ «Алтайский ЦГМС») [1, 4].

Рассматриваемые методы прогноза урожайности зерновых и зернобобовых культур базируются на физико-статистических моделях, отражающих связи между урожайностью зерновых культур и основными метеорологическими и агрометеорологическими факторами. По районам испытывались прогностические модели 1 и 2, позволяющие прогнозировать урожайность в весе после доработки на срок 21–23 июля. По Алтайскому краю испытывались по две прогностические модели, позволяющие прогнозировать урожайность в весе после доработки в единые по России сроки 21–23 июня и 21–23 июля и отличающиеся друг от друга набором предикторов.

Агрометеорологические параметры, используемые в качестве потенциальных предикторов, выбирались из материалов наблюдений гидрометеорологических станций. Для построения прогностических моделей использованы следующие параметры, достаточно хорошо описывающие агрометеорологические условия вегетационного периода: сумма осадков (за период с марта по вторую декаду июля); среднесуточная температура воздуха; накопленная температура воздуха, определяемая как сумма температур за период с мая по вторую декаду июля; дефицит влажности воздуха за период с мая по вторую декаду июля. Для оценки увлажнения вегетационного периода (май – вторая декада июля) использовались широко применяемые в агрометеорологии значения гидротермического коэффициента Г.Т. Селянинова [3].

Разработанные методы прогноза являются основой созданной автоматизированной технологии расчета прогноза урожайности зерновых и зернобобовых культур, реализованной на персональном компьютере. Составной частью технологии является автоматизированная

выборка информации по Новосибирской области из базы автоматизированной системы обработки агрометеорологических данных (АСОАМИ), по Алтайскому краю — из электронной версии таблиц ТСХ-1. Оценка урожайности и валового сбора зерновых культур также производится в рамках технологии.

Авторские испытания методов прогноза урожайности зерновых и зернобобовых культур по отдельным административным районам Новосибирской области проводились на независимом материале 2006—2008 гг. Производственные испытания осуществлялись в 2009—2010 гг. в отделе испытания и внедрения новых методов Гидрометцентра, в 2011 г. – в оперативном режиме; анализ и обобщение полученных результатов — в отделе агрометпрогнозов Гидрометцентра.

Авторские испытания метода прогноза урожайности и валового сбора зерновых и зернобобовых культур по Алтайскому краю проводились на независимом материале 2006—2009 гг. Производственные испытания осуществлялись: в 2010—2012 гг. в оперативном режиме в отделе агрометеорологии и агрометпрогнозов ФГБУ «Алтайский ЦГМС», анализ и обобщение полученных результатов — в отделе агрометпрогнозов Гидрометцентра.

Оценка успешности методов прогноза урожайности зерновых и зернобобовых культур проводилась согласно Методическим указаниям [2]. Сравнительная оценка успешности испытываемых методов осуществлялась с инерционными и климатологическими прогнозами. С целью получения более достоверных выводов об испытываемых методах проанализирована оправдываемость прогнозов за период авторских и производственных испытаний.

Результаты испытаний методов по Новосибирской области

Оправдываемость методических прогнозов урожайности и валового сбора зерновых и зернобобовых культур в период производственных испытаний улучшилась, по сравнению с периодом авторских испытаний, ПО Венгеровскому, Каргатскому, Купинскому, Кыштовскому, Новосибирскому, Черепановскому и Чистоозерному районам – на 1-7 %; Кочковскому району – на 11 %. По Барабинскому (модель 2), Доволенскому, Здвинскому (модель 2), Коченевскому (модель 1), Мошковскому, Северному и Усть-Тарскому (модель 1) районам Новосибирской области оправдываемость в годы производственных испытаний была ниже на 3-9 %, чем в годы авторских испытаний; по Куйбышевскому (обе модели), Барабинскому (модель 1), Здвинскому (модель 1) и Усть-Таркскому (модель 2) районам ниже на 10-19 %.

Не изменилось качество методических прогнозов в период оперативной проверки, составленных по Ордынскому и Коченевскому (модель 2) районам, и осталось высоким – 91–96 %. Не однозначно сработали модели, предложенные для расчета прогнозов урожайности по Карасукскому району: качество методических прогнозов, составленных в годы производственных испытаний по модели 1, ухудшилось на 8 %, а по модели 2 – улучшилось на 4 % (табл. 1).

Таблица 1 Оправдываемость (%) методических прогнозов урожайности зерновых и зернобобовых культур по районам Новосибирской области (по величине относительной ошибки)

	И	Мето	дические прог	Инерцион-	Климатоло-	
-			1		ные	гические
Район	Ne Je	авторские	производств	средняя		0006 2011
	№ модели	испытания 2006-2008	испытания 2009-2011	за 2006- 2011 гг.	средняя за 2	2006-2011 гг.
		Σ000-2008 ΓΓ.	гг.	201111.		
Барабинский	1	91	79	85	80	77
•	2	90	85	87	80	77
Венгеровский	1	89	93	91	78	69
Доволенский	1	90	86	88	82	76
Здвинский	1	89	75	82	74	75
	2	91	85	88	74	75
Карасукский	1	87	79	83	78	80
	2	87	91	89	78	80
Каргатский	1	87	88	88	81	76
Коченевский	1	95	92	93	92	88
	2	96	96	96	92	88
Кочковский	1	84	95	90	84	83
Куйбышевский	1	96	81	89	77	73
	2	96	77	87	77	73
Купинский	1	85	88	87	54	67
	2	84	91	88	54	67
Кыштовский	1	85	86	86	78	60
Мошковский	1	94	87	91	80	79
Новосибирский	1	88	93	91	85	78
Ордынский	1	91	91	91	91	87
Северный	1	81	77	79	64	58
Усть-Таркский	1	95	86	91	84	75
	2	95	85	91	84	75
Черепановский	1	87	91	89	78	78
	2	88	90	89	78	78
Чистоозерный	1	82	85	84	46	64

По результатам авторских и производственных испытаний за 6 лет средняя оправдываемость прогнозов, составленных по новому методу, оказалась достаточно

высокой: от 82 до 96 %, что в пределах и выше принятого порога успешности агрометеорологических прогнозов и выше оправдываемости инерционных и климатологических прогнозов на 1–26 %, по Купинскому и Чистоозерному районам – на 20–38 % (табл. 1), по Ордынскому району (модель 1) – на уровне инерционного.

Оценка оправдываемости прогнозов, составленных по новому методу, по величине допустимой погрешности ($\Delta \sigma$) позволила выявить число оправдавшихся методических, инерционных и климатологических прогнозов (табл. 2). По 13 районам – Карасукскому, Коченевскому, Купинскому, Убинскому и Черепановскому – по обеим моделям; Венгеровскому, Каргатскому, Кочковскому, Кыштовскому, Мошковскому, Ордынскому и Чистоозерному – по модели 1; и Здвинскому – по модели 2 – все шесть методических прогнозов оправдались. Оправдываемость метода составила 100 %, что на 17–67 % выше оправдываемости инерционных и климатологических прогнозов. По Кыштовскому и Коченевскому районам инерционные прогнозы также оправдались на 100 %.

По Барабинскому, Куйбышевскому и Усть-Таркскому районам по обеим моделям оправдываемость методических прогнозов 83 %, что на 33 % выше оправдываемости климатологических прогнозов, на 16 % выше инерционных прогнозов по Барабинскому району и на уровне инерционных по двум другим районам.

На уровне 83 % также оправдались методические прогнозы по районам Доволенскому, Здвинскому, Новосибирскому, Северному – по модели 1, Усть-Таркскому – по модели 2, что выше инерционных (на 16–33 %) и климатологических (на 16–33 %) прогнозов.

В районах, где оправдываемость методических и инерционных прогнозов одинакова, относительная ошибка методических прогнозов заметно меньше, за исключением Кыштовского района. Следует заметить, что при наблюдаемой тенденции роста относительной ошибки от методических прогнозов к инерционным, а затем к климатологическим прогнозам, по Здвинскому (26,3 %), Карасукскому (21,9 %), Купинскому (45,9 %) и Чистоозерному (54 %) районам наибольшая ошибка у инерционных прогнозов. По Кыштовскому району, наоборот, у инерционных прогнозов относительная ошибка наименьшая (12,2 %).

Решением Технического совета ФГБУ «Новосибирский ЦГМС-РСМЦ» от 13 ноября 2012 года рекомендованы к внедрению в оперативную практику Гидрометцентра в качестве основных методы прогноза урожайности и валового сбора зерновых и зернобобовых культур по административным районам Новосибирской области на срок 21–23 июля: Чистоозерный, Северный, Ордынский, Кыштовский, Мошковский, Новосибирский, Кочковский, Венгеровский, Каргатский, Доволенский, Усть-Таркский и Куйбышевский – модели 1;

Убинский, Купинский, Карасукский, Барабинский, Коченевский, Черепановский, Здвинский – модели 2.

Результаты испытаний метода по Алтайскому краю

Для территории Алтайского края анализ оправдываемости прогнозов среднекраевой урожайности зерновых и зернобобовых культур по испытываемому методу показал, что по результатам авторской проверки (2006–2009 гг.) методические прогнозы урожайности и валового сбора зерновых и зернобобовых культур по Алтайскому краю по всем моделям в течение трех лет (2006, 2007, 2008 гг.) обеспечили хороший результат – оправдываемость 80–99 %. В 2009 г. по всем моделям оправдываемость методических прогнозов составила 73–79 %.

Оценка качества методических прогнозов урожайности и валового сбора зерновых и зернобобовых культур по Алтайскому краю показала, что прогнозы, составленные по модели 1, в годы авторской и оперативной проверок имели высокую оправдываемость (87 %) (табл. 3). Оправдываемость методических прогнозов, составленных в предварительный срок (21-23 июня) по модели 2, оказалась ниже на 6 %, чем в годы авторских испытаний. Средняя оправдываемость методических прогнозов (срок 21–23 июня) в годы оперативных испытаний составила 81–87 %. В среднем за весь период испытаний оправдываемость предварительных методических прогнозов (на срок 21–23 июня) составила по модели 1 – 87 %, по модели 2 – 84 %, что выше оправдываемости инерционных (на 9 %) и климатологических (на 2–5 %) прогнозов.

Таблица 3 Оправдываемость (%) методических прогнозов урожайности зерновых и зернобобовых культур по Алтайскому краю (по величине относительной ошибки)

Прогнозы по заблаговремен- ности	ип	Метод	ические прогно	Инерцион- ные	Климатоло- гические		
	№ Модел	авторские испытания 2006-2009 гг.	производств. испытания 2010-2012 гг.	средняя за 2006- 2012 гг.	средняя за 2006-2012 гг.		
Предварительный (срок 21-23 июня)	1	87	87	87	78	82	
	2	87	81	84	78	82	
Уточненный (срок 21-23 июля)	3	87	94	90	78	82	
	4	87	89	88	78	82	

Из методических прогнозов урожайности и валового сбора зерновых и зернобобовых культур по Алтайскому краю, составленных в годы производственных испытаний в основной срок (21–23 июля), более успешными были прогнозы, рассчитанные по модели 3. Средняя оправдываемость их в период производственных испытаний составила 94 %. Из

методических прогнозов, составленных по модели 4, не оправдался прогноз в 2011 году. Абсолютная ошибка прогноза превысила допустимую погрешность на 0,5 ц/га. Средняя оправдываемость методических прогнозов по модели 4 за годы оперативной проверки составила 89 %, что ниже на 5 % успешности прогнозов, составленных по модели 3. Средняя оправдываемость методических прогнозов (на срок 21-23 июля) в годы оперативных 89-94 %, испытаний составила что выше оправдываемости инерционных климатологических прогнозов на 7-12 %. В среднем за весь период испытаний оправдываемость уточненных методических прогнозов (на срок 21-23 июля) составила по модели 3-90 %, по модели 4-88 %, что на 6-12 % выше оправдываемости инерционных и климатологических прогнозов (табл. 3).

Оценка оправдываемости прогнозов по величине допустимой погрешности ($\Delta \sigma$), согласно Методическим указаниям [4], позволила выявить число оправдавшихся методических, инерционных и климатологических прогнозов (табл. 4). Анализ результатов выявил преимущество нового метода. За период испытаний из семи составленных прогнозов оправдалось: в первый срок по модели 1 — шесть, по модели 2 — пять; во второй срок по модели 3 — шесть, по модели 4 — пять. Оправдываемость метода по моделям 1 и 3 и по моделям 2 и 4 составила как в первый, так и во второй срок 85,7 и 71,4 % соответственно, что превышает оправдываемость инерционных и климатологических прогнозов на 14 и 29 %.

Таблица 4 Результаты испытания метода прогноза урожайности зерновых и зернобобовых культур по Алтайскому краю (по $\Delta \sigma$)

Прогнозы по заблаговременности		Количество прогнозов		Оправдываемость прогнозов, %			Относительная ошибка прогнозов, %		
	№ Модели	составлено	оправдалось	методические	инерционные	климатологичес- кие	методические	инерционные	климатологичес- кие
Предварительный	1	7	6	86	57	57	12,8	21,7	18,5
(срок 21-23 июня)	2	7	5	71	57	57	16,1	21,7	18,5
Уточненный	1	7	6	86	57	57	9,8	21,7	18,5
(срок 21-23 июля)	2	7	5	71	57	57	12,1	21,7	18,5

Следует заметить, что оправдываемость инерционных и климатологических прогнозов на одном уровне – 57 %. Анализ относительной ошибки прогнозов показывает, что относительная ошибка методических прогнозов заметно ниже относительной ошибки

инерционных и климатологических прогнозов. Наибольшая относительная ошибка (21,7 %) у инерционных прогнозов.

Решением Технического совета ФГБУ «Западно-Сибирское УГМС» от 9 апреля 2013 года рекомендованы к внедрению в оперативную практику специалистов отдела агрометеорологии и агрометпрогнозов ФГБУ «Алтайский ЦГМС» в качестве основного метод прогноза урожайности и валового сбора зерновых и зернобобовых культур по Алтайскому краю на срок 21–23 июня – модель 1, на срок 21–23 июля – модель 3.

К достоинствам новых методов следует отнести:

- полную автоматизацию расчетов прогнозов, включая выборку данных из автоматизированной системы обработки агрометеорологической информации в Новосибирской области, электронной версии таблиц ТСХ-1 – в Алтайском крае, а также расчет оценки прогнозов;
- возможность метода прогнозировать урожайность зерновых и зернобобовых культур
 по Новосибирской области и Алтайскому краю в весе после доработки.

Список литературы

- 1. Метод прогноза урожайности и валового сбора зерновых и зернобобовых культур по административным районам Новосибирской области: отчет о НИР (заключительный) / ФГБУ «СибНИГМИ» Росгидромета; отв. исполнитель Т.В.Старостина. Новосибирск, 2010. 91 с.
- 2. РД 52.27.284-91. Методические указания. Проведение производственных (оперативных) испытаний новых и усовершенствованных методов гидрометеорологических и гелиогеофизических прогнозов. Л.: Гидрометеоиздат, 1991. 150 с.
- 3. . Селянинов Γ .Т. О сельскохозяйственной оценке климата // Труды по сельскохозяйственной метеорологии. -1928. Вып. 20. С. 169-178.
- 4. Создание автоматизированной системы оценки агрометеорологических условий вегетации картофеля по Новосибирской области, разработка метода и технологии прогноза валового сбора зерновых и зернобобовых культур по Алтайскому краю: отчет о НИР (заключительный) / ФГБУ «СибНИГМИ» Росгидромета; рук. Т.В.Старостина. Новосибирск, 2010. 77 с.

Tаблица 2 Результаты испытания методов прогноза урожайности зерновых и зернобобовых культур по районам Новосибирской области (по $\Delta \sigma$)

		Количество прогнозов		Оправді	ываемость прогн	1030В, %	Относительная ошибка прогнозов, %		
Район	№	составлено	оправдалось	методичес-кие	инерцион-	климатоло-	методичес-кие	инерцион-ные	климатоло-
	модели				ные	гические			гические
Барабинский	1	6	5	83	67	50	15,0	20,9	23,1
	2	6	5	83	67	50	12,8	20,9	23,1
Венгеровский	1	6	6	100	50	50	9,3	21,7	31,0
Доволенский	1	6	5	83	67	33	12,4	18,0	24,4
Здвинский	1	6	5	83	67	50	18,2	26,3	24,9
	2	6	6	100	67	50	12,4	26,3	24,9
Карасукский	1	6	6	100	67	67	17,1	21,9	19,8
	2	6	6	100	67	67	11,0	21,9	19,3
Каргатский	1	6	6	100	50	33	12,2	19,0	24,0
Коченевский	1	6	6	100	100	67	6,6	8,3	12,5
	2	6	6	100	100	67	3,8	8,3	12,5
Кочковский	1	6	6	100	50	50	10,3	16,3	17,2
Куйбышевский	1	6	5	83	83	50	11,3	23,4	27,5
	2	6	5	83	83	50	13,5	23,4	27,5
Купинский	1	6	6	100	50	50	13,2	45,9	33,1
	2	6	6	100	50	50	12,4	45,9	33,1
Кыштовский	1	6	6	100	100	83	14,5	12,2	40,3
Мошковский	1	6	6	100	50	33	9,1	20,5	21,3
Новосибирский	1	6	5	83	50	33	9,1	15,4	21,6
Ордынский	1	6	6	100	67	67	9,0	9,2	12,9
Северный	1	6	5	83	67	50	21,1	35,5	42,3
Убинский	1	6	6	100	83	33	4,7	13,8	22,5
	2	6	6	100	83	33	3,7	13,8	22,5
Усть-Таркский	1	6	5	83	83	50	9,3	16,3	25,0
	2	6	5	83	83	50	9,4	16,3	25,0
Черепановский	1	6	6	100	50	50	11,2	21,6	22,4
	2	6	6	100	50	50	10,9	21,6	22,4
Чистоозерный	1	6	6	100	33	67	16,9	54,0	35,7